Description: Lemma for 2503prm . Calculate the GCD of 2 ^ 1 8 - 1 == 1 8 3 1 with N = 2 5 0 3 . (Contributed by Mario Carneiro, 3-Mar-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 15-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 2503prm.1 | |- N = ; ; ; 2 5 0 3 |
|
Assertion | 2503lem3 | |- ( ( ( 2 ^ ; 1 8 ) - 1 ) gcd N ) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2503prm.1 | |- N = ; ; ; 2 5 0 3 |
|
2 | 2nn | |- 2 e. NN |
|
3 | 1nn0 | |- 1 e. NN0 |
|
4 | 8nn0 | |- 8 e. NN0 |
|
5 | 3 4 | deccl | |- ; 1 8 e. NN0 |
6 | nnexpcl | |- ( ( 2 e. NN /\ ; 1 8 e. NN0 ) -> ( 2 ^ ; 1 8 ) e. NN ) |
|
7 | 2 5 6 | mp2an | |- ( 2 ^ ; 1 8 ) e. NN |
8 | nnm1nn0 | |- ( ( 2 ^ ; 1 8 ) e. NN -> ( ( 2 ^ ; 1 8 ) - 1 ) e. NN0 ) |
|
9 | 7 8 | ax-mp | |- ( ( 2 ^ ; 1 8 ) - 1 ) e. NN0 |
10 | 3nn0 | |- 3 e. NN0 |
|
11 | 5 10 | deccl | |- ; ; 1 8 3 e. NN0 |
12 | 11 3 | deccl | |- ; ; ; 1 8 3 1 e. NN0 |
13 | 2nn0 | |- 2 e. NN0 |
|
14 | 5nn0 | |- 5 e. NN0 |
|
15 | 13 14 | deccl | |- ; 2 5 e. NN0 |
16 | 0nn0 | |- 0 e. NN0 |
|
17 | 15 16 | deccl | |- ; ; 2 5 0 e. NN0 |
18 | 3nn | |- 3 e. NN |
|
19 | 17 18 | decnncl | |- ; ; ; 2 5 0 3 e. NN |
20 | 1 19 | eqeltri | |- N e. NN |
21 | 1 | 2503lem1 | |- ( ( 2 ^ ; 1 8 ) mod N ) = ( ; ; ; 1 8 3 2 mod N ) |
22 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
23 | eqid | |- ; ; ; 1 8 3 1 = ; ; ; 1 8 3 1 |
|
24 | 11 3 22 23 | decsuc | |- ( ; ; ; 1 8 3 1 + 1 ) = ; ; ; 1 8 3 2 |
25 | 20 7 3 12 21 24 | modsubi | |- ( ( ( 2 ^ ; 1 8 ) - 1 ) mod N ) = ( ; ; ; 1 8 3 1 mod N ) |
26 | 6nn0 | |- 6 e. NN0 |
|
27 | 7nn0 | |- 7 e. NN0 |
|
28 | 26 27 | deccl | |- ; 6 7 e. NN0 |
29 | 28 13 | deccl | |- ; ; 6 7 2 e. NN0 |
30 | 4nn0 | |- 4 e. NN0 |
|
31 | 30 4 | deccl | |- ; 4 8 e. NN0 |
32 | 31 27 | deccl | |- ; ; 4 8 7 e. NN0 |
33 | 5 14 | deccl | |- ; ; 1 8 5 e. NN0 |
34 | 3 3 | deccl | |- ; 1 1 e. NN0 |
35 | 34 27 | deccl | |- ; ; 1 1 7 e. NN0 |
36 | 26 4 | deccl | |- ; 6 8 e. NN0 |
37 | 9nn0 | |- 9 e. NN0 |
|
38 | 30 37 | deccl | |- ; 4 9 e. NN0 |
39 | 3 37 | deccl | |- ; 1 9 e. NN0 |
40 | 38 | nn0zi | |- ; 4 9 e. ZZ |
41 | 39 | nn0zi | |- ; 1 9 e. ZZ |
42 | gcdcom | |- ( ( ; 4 9 e. ZZ /\ ; 1 9 e. ZZ ) -> ( ; 4 9 gcd ; 1 9 ) = ( ; 1 9 gcd ; 4 9 ) ) |
|
43 | 40 41 42 | mp2an | |- ( ; 4 9 gcd ; 1 9 ) = ( ; 1 9 gcd ; 4 9 ) |
44 | 9nn | |- 9 e. NN |
|
45 | 3 44 | decnncl | |- ; 1 9 e. NN |
46 | 1nn | |- 1 e. NN |
|
47 | 3 46 | decnncl | |- ; 1 1 e. NN |
48 | eqid | |- ; 1 9 = ; 1 9 |
|
49 | eqid | |- ; 1 1 = ; 1 1 |
|
50 | 2cn | |- 2 e. CC |
|
51 | 50 | mulid2i | |- ( 1 x. 2 ) = 2 |
52 | 51 22 | oveq12i | |- ( ( 1 x. 2 ) + ( 1 + 1 ) ) = ( 2 + 2 ) |
53 | 2p2e4 | |- ( 2 + 2 ) = 4 |
|
54 | 52 53 | eqtri | |- ( ( 1 x. 2 ) + ( 1 + 1 ) ) = 4 |
55 | 8p1e9 | |- ( 8 + 1 ) = 9 |
|
56 | 9t2e18 | |- ( 9 x. 2 ) = ; 1 8 |
|
57 | 3 4 55 56 | decsuc | |- ( ( 9 x. 2 ) + 1 ) = ; 1 9 |
58 | 3 37 3 3 48 49 13 37 3 54 57 | decmac | |- ( ( ; 1 9 x. 2 ) + ; 1 1 ) = ; 4 9 |
59 | 1lt9 | |- 1 < 9 |
|
60 | 3 3 44 59 | declt | |- ; 1 1 < ; 1 9 |
61 | 45 13 47 58 60 | ndvdsi | |- -. ; 1 9 || ; 4 9 |
62 | 19prm | |- ; 1 9 e. Prime |
|
63 | coprm | |- ( ( ; 1 9 e. Prime /\ ; 4 9 e. ZZ ) -> ( -. ; 1 9 || ; 4 9 <-> ( ; 1 9 gcd ; 4 9 ) = 1 ) ) |
|
64 | 62 40 63 | mp2an | |- ( -. ; 1 9 || ; 4 9 <-> ( ; 1 9 gcd ; 4 9 ) = 1 ) |
65 | 61 64 | mpbi | |- ( ; 1 9 gcd ; 4 9 ) = 1 |
66 | 43 65 | eqtri | |- ( ; 4 9 gcd ; 1 9 ) = 1 |
67 | eqid | |- ; 4 9 = ; 4 9 |
|
68 | 4cn | |- 4 e. CC |
|
69 | 68 | mulid2i | |- ( 1 x. 4 ) = 4 |
70 | 69 22 | oveq12i | |- ( ( 1 x. 4 ) + ( 1 + 1 ) ) = ( 4 + 2 ) |
71 | 4p2e6 | |- ( 4 + 2 ) = 6 |
|
72 | 70 71 | eqtri | |- ( ( 1 x. 4 ) + ( 1 + 1 ) ) = 6 |
73 | 9cn | |- 9 e. CC |
|
74 | 73 | mulid2i | |- ( 1 x. 9 ) = 9 |
75 | 74 | oveq1i | |- ( ( 1 x. 9 ) + 9 ) = ( 9 + 9 ) |
76 | 9p9e18 | |- ( 9 + 9 ) = ; 1 8 |
|
77 | 75 76 | eqtri | |- ( ( 1 x. 9 ) + 9 ) = ; 1 8 |
78 | 30 37 3 37 67 48 3 4 3 72 77 | decma2c | |- ( ( 1 x. ; 4 9 ) + ; 1 9 ) = ; 6 8 |
79 | 3 39 38 66 78 | gcdi | |- ( ; 6 8 gcd ; 4 9 ) = 1 |
80 | eqid | |- ; 6 8 = ; 6 8 |
|
81 | 6cn | |- 6 e. CC |
|
82 | 81 | mulid2i | |- ( 1 x. 6 ) = 6 |
83 | 4p1e5 | |- ( 4 + 1 ) = 5 |
|
84 | 82 83 | oveq12i | |- ( ( 1 x. 6 ) + ( 4 + 1 ) ) = ( 6 + 5 ) |
85 | 6p5e11 | |- ( 6 + 5 ) = ; 1 1 |
|
86 | 84 85 | eqtri | |- ( ( 1 x. 6 ) + ( 4 + 1 ) ) = ; 1 1 |
87 | 8cn | |- 8 e. CC |
|
88 | 87 | mulid2i | |- ( 1 x. 8 ) = 8 |
89 | 88 | oveq1i | |- ( ( 1 x. 8 ) + 9 ) = ( 8 + 9 ) |
90 | 9p8e17 | |- ( 9 + 8 ) = ; 1 7 |
|
91 | 73 87 90 | addcomli | |- ( 8 + 9 ) = ; 1 7 |
92 | 89 91 | eqtri | |- ( ( 1 x. 8 ) + 9 ) = ; 1 7 |
93 | 26 4 30 37 80 67 3 27 3 86 92 | decma2c | |- ( ( 1 x. ; 6 8 ) + ; 4 9 ) = ; ; 1 1 7 |
94 | 3 38 36 79 93 | gcdi | |- ( ; ; 1 1 7 gcd ; 6 8 ) = 1 |
95 | eqid | |- ; ; 1 1 7 = ; ; 1 1 7 |
|
96 | 6p1e7 | |- ( 6 + 1 ) = 7 |
|
97 | 27 | dec0h | |- 7 = ; 0 7 |
98 | 96 97 | eqtri | |- ( 6 + 1 ) = ; 0 7 |
99 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
100 | 00id | |- ( 0 + 0 ) = 0 |
|
101 | 99 100 | oveq12i | |- ( ( 1 x. 1 ) + ( 0 + 0 ) ) = ( 1 + 0 ) |
102 | ax-1cn | |- 1 e. CC |
|
103 | 102 | addid1i | |- ( 1 + 0 ) = 1 |
104 | 101 103 | eqtri | |- ( ( 1 x. 1 ) + ( 0 + 0 ) ) = 1 |
105 | 99 | oveq1i | |- ( ( 1 x. 1 ) + 7 ) = ( 1 + 7 ) |
106 | 7cn | |- 7 e. CC |
|
107 | 7p1e8 | |- ( 7 + 1 ) = 8 |
|
108 | 106 102 107 | addcomli | |- ( 1 + 7 ) = 8 |
109 | 4 | dec0h | |- 8 = ; 0 8 |
110 | 105 108 109 | 3eqtri | |- ( ( 1 x. 1 ) + 7 ) = ; 0 8 |
111 | 3 3 16 27 49 98 3 4 16 104 110 | decma2c | |- ( ( 1 x. ; 1 1 ) + ( 6 + 1 ) ) = ; 1 8 |
112 | 106 | mulid2i | |- ( 1 x. 7 ) = 7 |
113 | 112 | oveq1i | |- ( ( 1 x. 7 ) + 8 ) = ( 7 + 8 ) |
114 | 8p7e15 | |- ( 8 + 7 ) = ; 1 5 |
|
115 | 87 106 114 | addcomli | |- ( 7 + 8 ) = ; 1 5 |
116 | 113 115 | eqtri | |- ( ( 1 x. 7 ) + 8 ) = ; 1 5 |
117 | 34 27 26 4 95 80 3 14 3 111 116 | decma2c | |- ( ( 1 x. ; ; 1 1 7 ) + ; 6 8 ) = ; ; 1 8 5 |
118 | 3 36 35 94 117 | gcdi | |- ( ; ; 1 8 5 gcd ; ; 1 1 7 ) = 1 |
119 | eqid | |- ; ; 1 8 5 = ; ; 1 8 5 |
|
120 | eqid | |- ; 1 8 = ; 1 8 |
|
121 | 3 3 22 49 | decsuc | |- ( ; 1 1 + 1 ) = ; 1 2 |
122 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
123 | 122 22 | oveq12i | |- ( ( 2 x. 1 ) + ( 1 + 1 ) ) = ( 2 + 2 ) |
124 | 123 53 | eqtri | |- ( ( 2 x. 1 ) + ( 1 + 1 ) ) = 4 |
125 | 8t2e16 | |- ( 8 x. 2 ) = ; 1 6 |
|
126 | 87 50 125 | mulcomli | |- ( 2 x. 8 ) = ; 1 6 |
127 | 6p2e8 | |- ( 6 + 2 ) = 8 |
|
128 | 3 26 13 126 127 | decaddi | |- ( ( 2 x. 8 ) + 2 ) = ; 1 8 |
129 | 3 4 3 13 120 121 13 4 3 124 128 | decma2c | |- ( ( 2 x. ; 1 8 ) + ( ; 1 1 + 1 ) ) = ; 4 8 |
130 | 5cn | |- 5 e. CC |
|
131 | 5t2e10 | |- ( 5 x. 2 ) = ; 1 0 |
|
132 | 130 50 131 | mulcomli | |- ( 2 x. 5 ) = ; 1 0 |
133 | 106 | addid2i | |- ( 0 + 7 ) = 7 |
134 | 3 16 27 132 133 | decaddi | |- ( ( 2 x. 5 ) + 7 ) = ; 1 7 |
135 | 5 14 34 27 119 95 13 27 3 129 134 | decma2c | |- ( ( 2 x. ; ; 1 8 5 ) + ; ; 1 1 7 ) = ; ; 4 8 7 |
136 | 13 35 33 118 135 | gcdi | |- ( ; ; 4 8 7 gcd ; ; 1 8 5 ) = 1 |
137 | eqid | |- ; ; 4 8 7 = ; ; 4 8 7 |
|
138 | eqid | |- ; 4 8 = ; 4 8 |
|
139 | 3 4 55 120 | decsuc | |- ( ; 1 8 + 1 ) = ; 1 9 |
140 | 30 4 3 37 138 139 3 27 3 72 92 | decma2c | |- ( ( 1 x. ; 4 8 ) + ( ; 1 8 + 1 ) ) = ; 6 7 |
141 | 112 | oveq1i | |- ( ( 1 x. 7 ) + 5 ) = ( 7 + 5 ) |
142 | 7p5e12 | |- ( 7 + 5 ) = ; 1 2 |
|
143 | 141 142 | eqtri | |- ( ( 1 x. 7 ) + 5 ) = ; 1 2 |
144 | 31 27 5 14 137 119 3 13 3 140 143 | decma2c | |- ( ( 1 x. ; ; 4 8 7 ) + ; ; 1 8 5 ) = ; ; 6 7 2 |
145 | 3 33 32 136 144 | gcdi | |- ( ; ; 6 7 2 gcd ; ; 4 8 7 ) = 1 |
146 | eqid | |- ; ; 6 7 2 = ; ; 6 7 2 |
|
147 | eqid | |- ; 6 7 = ; 6 7 |
|
148 | 30 4 55 138 | decsuc | |- ( ; 4 8 + 1 ) = ; 4 9 |
149 | 71 | oveq2i | |- ( ( 2 x. 6 ) + ( 4 + 2 ) ) = ( ( 2 x. 6 ) + 6 ) |
150 | 6t2e12 | |- ( 6 x. 2 ) = ; 1 2 |
|
151 | 81 50 150 | mulcomli | |- ( 2 x. 6 ) = ; 1 2 |
152 | 81 50 127 | addcomli | |- ( 2 + 6 ) = 8 |
153 | 3 13 26 151 152 | decaddi | |- ( ( 2 x. 6 ) + 6 ) = ; 1 8 |
154 | 149 153 | eqtri | |- ( ( 2 x. 6 ) + ( 4 + 2 ) ) = ; 1 8 |
155 | 7t2e14 | |- ( 7 x. 2 ) = ; 1 4 |
|
156 | 106 50 155 | mulcomli | |- ( 2 x. 7 ) = ; 1 4 |
157 | 9p4e13 | |- ( 9 + 4 ) = ; 1 3 |
|
158 | 73 68 157 | addcomli | |- ( 4 + 9 ) = ; 1 3 |
159 | 3 30 37 156 22 10 158 | decaddci | |- ( ( 2 x. 7 ) + 9 ) = ; 2 3 |
160 | 26 27 30 37 147 148 13 10 13 154 159 | decma2c | |- ( ( 2 x. ; 6 7 ) + ( ; 4 8 + 1 ) ) = ; ; 1 8 3 |
161 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
162 | 161 | oveq1i | |- ( ( 2 x. 2 ) + 7 ) = ( 4 + 7 ) |
163 | 7p4e11 | |- ( 7 + 4 ) = ; 1 1 |
|
164 | 106 68 163 | addcomli | |- ( 4 + 7 ) = ; 1 1 |
165 | 162 164 | eqtri | |- ( ( 2 x. 2 ) + 7 ) = ; 1 1 |
166 | 28 13 31 27 146 137 13 3 3 160 165 | decma2c | |- ( ( 2 x. ; ; 6 7 2 ) + ; ; 4 8 7 ) = ; ; ; 1 8 3 1 |
167 | 13 32 29 145 166 | gcdi | |- ( ; ; ; 1 8 3 1 gcd ; ; 6 7 2 ) = 1 |
168 | eqid | |- ; ; 1 8 3 = ; ; 1 8 3 |
|
169 | 28 | nn0cni | |- ; 6 7 e. CC |
170 | 169 | addid1i | |- ( ; 6 7 + 0 ) = ; 6 7 |
171 | 102 | addid2i | |- ( 0 + 1 ) = 1 |
172 | 99 171 | oveq12i | |- ( ( 1 x. 1 ) + ( 0 + 1 ) ) = ( 1 + 1 ) |
173 | 172 22 | eqtri | |- ( ( 1 x. 1 ) + ( 0 + 1 ) ) = 2 |
174 | 88 | oveq1i | |- ( ( 1 x. 8 ) + 7 ) = ( 8 + 7 ) |
175 | 174 114 | eqtri | |- ( ( 1 x. 8 ) + 7 ) = ; 1 5 |
176 | 3 4 16 27 120 98 3 14 3 173 175 | decma2c | |- ( ( 1 x. ; 1 8 ) + ( 6 + 1 ) ) = ; 2 5 |
177 | 3cn | |- 3 e. CC |
|
178 | 177 | mulid2i | |- ( 1 x. 3 ) = 3 |
179 | 178 | oveq1i | |- ( ( 1 x. 3 ) + 7 ) = ( 3 + 7 ) |
180 | 7p3e10 | |- ( 7 + 3 ) = ; 1 0 |
|
181 | 106 177 180 | addcomli | |- ( 3 + 7 ) = ; 1 0 |
182 | 179 181 | eqtri | |- ( ( 1 x. 3 ) + 7 ) = ; 1 0 |
183 | 5 10 26 27 168 170 3 16 3 176 182 | decma2c | |- ( ( 1 x. ; ; 1 8 3 ) + ( ; 6 7 + 0 ) ) = ; ; 2 5 0 |
184 | 99 | oveq1i | |- ( ( 1 x. 1 ) + 2 ) = ( 1 + 2 ) |
185 | 1p2e3 | |- ( 1 + 2 ) = 3 |
|
186 | 10 | dec0h | |- 3 = ; 0 3 |
187 | 184 185 186 | 3eqtri | |- ( ( 1 x. 1 ) + 2 ) = ; 0 3 |
188 | 11 3 28 13 23 146 3 10 16 183 187 | decma2c | |- ( ( 1 x. ; ; ; 1 8 3 1 ) + ; ; 6 7 2 ) = ; ; ; 2 5 0 3 |
189 | 188 1 | eqtr4i | |- ( ( 1 x. ; ; ; 1 8 3 1 ) + ; ; 6 7 2 ) = N |
190 | 3 29 12 167 189 | gcdi | |- ( N gcd ; ; ; 1 8 3 1 ) = 1 |
191 | 9 12 20 25 190 | gcdmodi | |- ( ( ( 2 ^ ; 1 8 ) - 1 ) gcd N ) = 1 |