Step |
Hyp |
Ref |
Expression |
1 |
|
add32 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( ( A + C ) + B ) ) |
2 |
1
|
3expa |
|- ( ( ( A e. CC /\ B e. CC ) /\ C e. CC ) -> ( ( A + B ) + C ) = ( ( A + C ) + B ) ) |
3 |
2
|
adantrr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) + C ) = ( ( A + C ) + B ) ) |
4 |
3
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + B ) + C ) - D ) = ( ( ( A + C ) + B ) - D ) ) |
5 |
|
addcl |
|- ( ( A e. CC /\ C e. CC ) -> ( A + C ) e. CC ) |
6 |
|
addsub |
|- ( ( ( A + C ) e. CC /\ B e. CC /\ D e. CC ) -> ( ( ( A + C ) + B ) - D ) = ( ( ( A + C ) - D ) + B ) ) |
7 |
6
|
3expb |
|- ( ( ( A + C ) e. CC /\ ( B e. CC /\ D e. CC ) ) -> ( ( ( A + C ) + B ) - D ) = ( ( ( A + C ) - D ) + B ) ) |
8 |
5 7
|
sylan |
|- ( ( ( A e. CC /\ C e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( ( A + C ) + B ) - D ) = ( ( ( A + C ) - D ) + B ) ) |
9 |
8
|
an4s |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + C ) + B ) - D ) = ( ( ( A + C ) - D ) + B ) ) |
10 |
4 9
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + B ) + C ) - D ) = ( ( ( A + C ) - D ) + B ) ) |