Metamath Proof Explorer


Theorem 2albidv

Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997)

Ref Expression
Hypothesis 2albidv.1
|- ( ph -> ( ps <-> ch ) )
Assertion 2albidv
|- ( ph -> ( A. x A. y ps <-> A. x A. y ch ) )

Proof

Step Hyp Ref Expression
1 2albidv.1
 |-  ( ph -> ( ps <-> ch ) )
2 1 albidv
 |-  ( ph -> ( A. y ps <-> A. y ch ) )
3 2 albidv
 |-  ( ph -> ( A. x A. y ps <-> A. x A. y ch ) )