Step |
Hyp |
Ref |
Expression |
1 |
|
2atmatz.j |
|- .\/ = ( join ` K ) |
2 |
|
2atmatz.m |
|- ./\ = ( meet ` K ) |
3 |
|
2atmatz.z |
|- .0. = ( 0. ` K ) |
4 |
|
2atmatz.a |
|- A = ( Atoms ` K ) |
5 |
|
simpll |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S e. A ) -> ( K e. HL /\ P e. A /\ Q e. A ) ) |
6 |
|
simplr1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S e. A ) -> R e. A ) |
7 |
|
simpr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S e. A ) -> S e. A ) |
8 |
|
simplr3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S e. A ) -> ( P .\/ Q ) =/= ( R .\/ S ) ) |
9 |
|
simpl1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> K e. HL ) |
10 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
11 |
9 10
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> K e. OL ) |
12 |
|
simpr1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> R e. A ) |
13 |
|
simpr2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> S e. A ) |
14 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
15 |
14 1 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) |
16 |
9 12 13 15
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( R .\/ S ) e. ( Base ` K ) ) |
17 |
|
simpl3 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> Q e. A ) |
18 |
14 2 3 4
|
meetat2 |
|- ( ( K e. OL /\ ( R .\/ S ) e. ( Base ` K ) /\ Q e. A ) -> ( ( ( R .\/ S ) ./\ Q ) e. A \/ ( ( R .\/ S ) ./\ Q ) = .0. ) ) |
19 |
11 16 17 18
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( ( ( R .\/ S ) ./\ Q ) e. A \/ ( ( R .\/ S ) ./\ Q ) = .0. ) ) |
20 |
19
|
adantr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( ( ( R .\/ S ) ./\ Q ) e. A \/ ( ( R .\/ S ) ./\ Q ) = .0. ) ) |
21 |
|
oveq1 |
|- ( P = Q -> ( P .\/ Q ) = ( Q .\/ Q ) ) |
22 |
1 4
|
hlatjidm |
|- ( ( K e. HL /\ Q e. A ) -> ( Q .\/ Q ) = Q ) |
23 |
9 17 22
|
syl2anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( Q .\/ Q ) = Q ) |
24 |
21 23
|
sylan9eqr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( P .\/ Q ) = Q ) |
25 |
24
|
oveq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = ( Q ./\ ( R .\/ S ) ) ) |
26 |
9
|
hllatd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> K e. Lat ) |
27 |
14 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
28 |
17 27
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> Q e. ( Base ` K ) ) |
29 |
14 2
|
latmcom |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( R .\/ S ) e. ( Base ` K ) ) -> ( Q ./\ ( R .\/ S ) ) = ( ( R .\/ S ) ./\ Q ) ) |
30 |
26 28 16 29
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( Q ./\ ( R .\/ S ) ) = ( ( R .\/ S ) ./\ Q ) ) |
31 |
30
|
adantr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( Q ./\ ( R .\/ S ) ) = ( ( R .\/ S ) ./\ Q ) ) |
32 |
25 31
|
eqtrd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = ( ( R .\/ S ) ./\ Q ) ) |
33 |
32
|
eleq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A <-> ( ( R .\/ S ) ./\ Q ) e. A ) ) |
34 |
32
|
eqeq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. <-> ( ( R .\/ S ) ./\ Q ) = .0. ) ) |
35 |
33 34
|
orbi12d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) <-> ( ( ( R .\/ S ) ./\ Q ) e. A \/ ( ( R .\/ S ) ./\ Q ) = .0. ) ) ) |
36 |
20 35
|
mpbird |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
37 |
14 1 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
38 |
37
|
adantr |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
39 |
14 2 3 4
|
meetat2 |
|- ( ( K e. OL /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. A ) -> ( ( ( P .\/ Q ) ./\ S ) e. A \/ ( ( P .\/ Q ) ./\ S ) = .0. ) ) |
40 |
11 38 13 39
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( ( ( P .\/ Q ) ./\ S ) e. A \/ ( ( P .\/ Q ) ./\ S ) = .0. ) ) |
41 |
40
|
adantr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ R = S ) -> ( ( ( P .\/ Q ) ./\ S ) e. A \/ ( ( P .\/ Q ) ./\ S ) = .0. ) ) |
42 |
|
oveq1 |
|- ( R = S -> ( R .\/ S ) = ( S .\/ S ) ) |
43 |
1 4
|
hlatjidm |
|- ( ( K e. HL /\ S e. A ) -> ( S .\/ S ) = S ) |
44 |
9 13 43
|
syl2anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( S .\/ S ) = S ) |
45 |
42 44
|
sylan9eqr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ R = S ) -> ( R .\/ S ) = S ) |
46 |
45
|
oveq2d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ R = S ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = ( ( P .\/ Q ) ./\ S ) ) |
47 |
46
|
eleq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ R = S ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A <-> ( ( P .\/ Q ) ./\ S ) e. A ) ) |
48 |
46
|
eqeq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ R = S ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. <-> ( ( P .\/ Q ) ./\ S ) = .0. ) ) |
49 |
47 48
|
orbi12d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ R = S ) -> ( ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) <-> ( ( ( P .\/ Q ) ./\ S ) e. A \/ ( ( P .\/ Q ) ./\ S ) = .0. ) ) ) |
50 |
41 49
|
mpbird |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ R = S ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
51 |
50
|
adantlr |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P =/= Q ) /\ R = S ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
52 |
|
df-ne |
|- ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. <-> -. ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) |
53 |
|
simpll1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> K e. HL ) |
54 |
|
simpll2 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> P e. A ) |
55 |
|
simpll3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> Q e. A ) |
56 |
|
simpr1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> P =/= Q ) |
57 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
58 |
1 4 57
|
llni2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. ( LLines ` K ) ) |
59 |
53 54 55 56 58
|
syl31anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> ( P .\/ Q ) e. ( LLines ` K ) ) |
60 |
|
simplr1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> R e. A ) |
61 |
|
simplr2 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> S e. A ) |
62 |
|
simpr2 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> R =/= S ) |
63 |
1 4 57
|
llni2 |
|- ( ( ( K e. HL /\ R e. A /\ S e. A ) /\ R =/= S ) -> ( R .\/ S ) e. ( LLines ` K ) ) |
64 |
53 60 61 62 63
|
syl31anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> ( R .\/ S ) e. ( LLines ` K ) ) |
65 |
|
simplr3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> ( P .\/ Q ) =/= ( R .\/ S ) ) |
66 |
|
simpr3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) |
67 |
2 3 4 57
|
2llnmat |
|- ( ( ( K e. HL /\ ( P .\/ Q ) e. ( LLines ` K ) /\ ( R .\/ S ) e. ( LLines ` K ) ) /\ ( ( P .\/ Q ) =/= ( R .\/ S ) /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A ) |
68 |
53 59 64 65 66 67
|
syl32anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A ) |
69 |
68
|
3exp2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( P =/= Q -> ( R =/= S -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A ) ) ) ) |
70 |
69
|
imp31 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P =/= Q ) /\ R =/= S ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A ) ) |
71 |
52 70
|
syl5bir |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P =/= Q ) /\ R =/= S ) -> ( -. ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A ) ) |
72 |
71
|
orrd |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P =/= Q ) /\ R =/= S ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A ) ) |
73 |
72
|
orcomd |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P =/= Q ) /\ R =/= S ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
74 |
51 73
|
pm2.61dane |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P =/= Q ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
75 |
36 74
|
pm2.61dane |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
76 |
5 6 7 8 75
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S e. A ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
77 |
|
simpl1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> K e. HL ) |
78 |
77 10
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> K e. OL ) |
79 |
37
|
adantr |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
80 |
|
simpr1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> R e. A ) |
81 |
14 2 3 4
|
meetat2 |
|- ( ( K e. OL /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. A ) -> ( ( ( P .\/ Q ) ./\ R ) e. A \/ ( ( P .\/ Q ) ./\ R ) = .0. ) ) |
82 |
78 79 80 81
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( ( ( P .\/ Q ) ./\ R ) e. A \/ ( ( P .\/ Q ) ./\ R ) = .0. ) ) |
83 |
82
|
adantr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S = .0. ) -> ( ( ( P .\/ Q ) ./\ R ) e. A \/ ( ( P .\/ Q ) ./\ R ) = .0. ) ) |
84 |
|
oveq2 |
|- ( S = .0. -> ( R .\/ S ) = ( R .\/ .0. ) ) |
85 |
14 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
86 |
80 85
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> R e. ( Base ` K ) ) |
87 |
14 1 3
|
olj01 |
|- ( ( K e. OL /\ R e. ( Base ` K ) ) -> ( R .\/ .0. ) = R ) |
88 |
78 86 87
|
syl2anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( R .\/ .0. ) = R ) |
89 |
84 88
|
sylan9eqr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S = .0. ) -> ( R .\/ S ) = R ) |
90 |
89
|
oveq2d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S = .0. ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = ( ( P .\/ Q ) ./\ R ) ) |
91 |
90
|
eleq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S = .0. ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A <-> ( ( P .\/ Q ) ./\ R ) e. A ) ) |
92 |
90
|
eqeq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S = .0. ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. <-> ( ( P .\/ Q ) ./\ R ) = .0. ) ) |
93 |
91 92
|
orbi12d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S = .0. ) -> ( ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) <-> ( ( ( P .\/ Q ) ./\ R ) e. A \/ ( ( P .\/ Q ) ./\ R ) = .0. ) ) ) |
94 |
83 93
|
mpbird |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S = .0. ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
95 |
|
simpr2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( S e. A \/ S = .0. ) ) |
96 |
76 94 95
|
mpjaodan |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |