| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2atmatz.j |
|- .\/ = ( join ` K ) |
| 2 |
|
2atmatz.m |
|- ./\ = ( meet ` K ) |
| 3 |
|
2atmatz.z |
|- .0. = ( 0. ` K ) |
| 4 |
|
2atmatz.a |
|- A = ( Atoms ` K ) |
| 5 |
|
simpll |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S e. A ) -> ( K e. HL /\ P e. A /\ Q e. A ) ) |
| 6 |
|
simplr1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S e. A ) -> R e. A ) |
| 7 |
|
simpr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S e. A ) -> S e. A ) |
| 8 |
|
simplr3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S e. A ) -> ( P .\/ Q ) =/= ( R .\/ S ) ) |
| 9 |
|
simpl1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> K e. HL ) |
| 10 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 11 |
9 10
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> K e. OL ) |
| 12 |
|
simpr1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> R e. A ) |
| 13 |
|
simpr2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> S e. A ) |
| 14 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 15 |
14 1 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) |
| 16 |
9 12 13 15
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( R .\/ S ) e. ( Base ` K ) ) |
| 17 |
|
simpl3 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> Q e. A ) |
| 18 |
14 2 3 4
|
meetat2 |
|- ( ( K e. OL /\ ( R .\/ S ) e. ( Base ` K ) /\ Q e. A ) -> ( ( ( R .\/ S ) ./\ Q ) e. A \/ ( ( R .\/ S ) ./\ Q ) = .0. ) ) |
| 19 |
11 16 17 18
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( ( ( R .\/ S ) ./\ Q ) e. A \/ ( ( R .\/ S ) ./\ Q ) = .0. ) ) |
| 20 |
19
|
adantr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( ( ( R .\/ S ) ./\ Q ) e. A \/ ( ( R .\/ S ) ./\ Q ) = .0. ) ) |
| 21 |
|
oveq1 |
|- ( P = Q -> ( P .\/ Q ) = ( Q .\/ Q ) ) |
| 22 |
1 4
|
hlatjidm |
|- ( ( K e. HL /\ Q e. A ) -> ( Q .\/ Q ) = Q ) |
| 23 |
9 17 22
|
syl2anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( Q .\/ Q ) = Q ) |
| 24 |
21 23
|
sylan9eqr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( P .\/ Q ) = Q ) |
| 25 |
24
|
oveq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = ( Q ./\ ( R .\/ S ) ) ) |
| 26 |
9
|
hllatd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> K e. Lat ) |
| 27 |
14 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 28 |
17 27
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> Q e. ( Base ` K ) ) |
| 29 |
14 2
|
latmcom |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( R .\/ S ) e. ( Base ` K ) ) -> ( Q ./\ ( R .\/ S ) ) = ( ( R .\/ S ) ./\ Q ) ) |
| 30 |
26 28 16 29
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( Q ./\ ( R .\/ S ) ) = ( ( R .\/ S ) ./\ Q ) ) |
| 31 |
30
|
adantr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( Q ./\ ( R .\/ S ) ) = ( ( R .\/ S ) ./\ Q ) ) |
| 32 |
25 31
|
eqtrd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = ( ( R .\/ S ) ./\ Q ) ) |
| 33 |
32
|
eleq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A <-> ( ( R .\/ S ) ./\ Q ) e. A ) ) |
| 34 |
32
|
eqeq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. <-> ( ( R .\/ S ) ./\ Q ) = .0. ) ) |
| 35 |
33 34
|
orbi12d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) <-> ( ( ( R .\/ S ) ./\ Q ) e. A \/ ( ( R .\/ S ) ./\ Q ) = .0. ) ) ) |
| 36 |
20 35
|
mpbird |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P = Q ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
| 37 |
14 1 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 38 |
37
|
adantr |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 39 |
14 2 3 4
|
meetat2 |
|- ( ( K e. OL /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. A ) -> ( ( ( P .\/ Q ) ./\ S ) e. A \/ ( ( P .\/ Q ) ./\ S ) = .0. ) ) |
| 40 |
11 38 13 39
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( ( ( P .\/ Q ) ./\ S ) e. A \/ ( ( P .\/ Q ) ./\ S ) = .0. ) ) |
| 41 |
40
|
adantr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ R = S ) -> ( ( ( P .\/ Q ) ./\ S ) e. A \/ ( ( P .\/ Q ) ./\ S ) = .0. ) ) |
| 42 |
|
oveq1 |
|- ( R = S -> ( R .\/ S ) = ( S .\/ S ) ) |
| 43 |
1 4
|
hlatjidm |
|- ( ( K e. HL /\ S e. A ) -> ( S .\/ S ) = S ) |
| 44 |
9 13 43
|
syl2anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( S .\/ S ) = S ) |
| 45 |
42 44
|
sylan9eqr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ R = S ) -> ( R .\/ S ) = S ) |
| 46 |
45
|
oveq2d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ R = S ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = ( ( P .\/ Q ) ./\ S ) ) |
| 47 |
46
|
eleq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ R = S ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A <-> ( ( P .\/ Q ) ./\ S ) e. A ) ) |
| 48 |
46
|
eqeq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ R = S ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. <-> ( ( P .\/ Q ) ./\ S ) = .0. ) ) |
| 49 |
47 48
|
orbi12d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ R = S ) -> ( ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) <-> ( ( ( P .\/ Q ) ./\ S ) e. A \/ ( ( P .\/ Q ) ./\ S ) = .0. ) ) ) |
| 50 |
41 49
|
mpbird |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ R = S ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
| 51 |
50
|
adantlr |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P =/= Q ) /\ R = S ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
| 52 |
|
df-ne |
|- ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. <-> -. ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) |
| 53 |
|
simpll1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> K e. HL ) |
| 54 |
|
simpll2 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> P e. A ) |
| 55 |
|
simpll3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> Q e. A ) |
| 56 |
|
simpr1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> P =/= Q ) |
| 57 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
| 58 |
1 4 57
|
llni2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. ( LLines ` K ) ) |
| 59 |
53 54 55 56 58
|
syl31anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> ( P .\/ Q ) e. ( LLines ` K ) ) |
| 60 |
|
simplr1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> R e. A ) |
| 61 |
|
simplr2 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> S e. A ) |
| 62 |
|
simpr2 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> R =/= S ) |
| 63 |
1 4 57
|
llni2 |
|- ( ( ( K e. HL /\ R e. A /\ S e. A ) /\ R =/= S ) -> ( R .\/ S ) e. ( LLines ` K ) ) |
| 64 |
53 60 61 62 63
|
syl31anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> ( R .\/ S ) e. ( LLines ` K ) ) |
| 65 |
|
simplr3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> ( P .\/ Q ) =/= ( R .\/ S ) ) |
| 66 |
|
simpr3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) |
| 67 |
2 3 4 57
|
2llnmat |
|- ( ( ( K e. HL /\ ( P .\/ Q ) e. ( LLines ` K ) /\ ( R .\/ S ) e. ( LLines ` K ) ) /\ ( ( P .\/ Q ) =/= ( R .\/ S ) /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A ) |
| 68 |
53 59 64 65 66 67
|
syl32anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ ( P =/= Q /\ R =/= S /\ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. ) ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A ) |
| 69 |
68
|
3exp2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( P =/= Q -> ( R =/= S -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A ) ) ) ) |
| 70 |
69
|
imp31 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P =/= Q ) /\ R =/= S ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) =/= .0. -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A ) ) |
| 71 |
52 70
|
biimtrrid |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P =/= Q ) /\ R =/= S ) -> ( -. ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A ) ) |
| 72 |
71
|
orrd |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P =/= Q ) /\ R =/= S ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A ) ) |
| 73 |
72
|
orcomd |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P =/= Q ) /\ R =/= S ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
| 74 |
51 73
|
pm2.61dane |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ P =/= Q ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
| 75 |
36 74
|
pm2.61dane |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
| 76 |
5 6 7 8 75
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S e. A ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
| 77 |
|
simpl1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> K e. HL ) |
| 78 |
77 10
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> K e. OL ) |
| 79 |
37
|
adantr |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 80 |
|
simpr1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> R e. A ) |
| 81 |
14 2 3 4
|
meetat2 |
|- ( ( K e. OL /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. A ) -> ( ( ( P .\/ Q ) ./\ R ) e. A \/ ( ( P .\/ Q ) ./\ R ) = .0. ) ) |
| 82 |
78 79 80 81
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( ( ( P .\/ Q ) ./\ R ) e. A \/ ( ( P .\/ Q ) ./\ R ) = .0. ) ) |
| 83 |
82
|
adantr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S = .0. ) -> ( ( ( P .\/ Q ) ./\ R ) e. A \/ ( ( P .\/ Q ) ./\ R ) = .0. ) ) |
| 84 |
|
oveq2 |
|- ( S = .0. -> ( R .\/ S ) = ( R .\/ .0. ) ) |
| 85 |
14 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 86 |
80 85
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> R e. ( Base ` K ) ) |
| 87 |
14 1 3
|
olj01 |
|- ( ( K e. OL /\ R e. ( Base ` K ) ) -> ( R .\/ .0. ) = R ) |
| 88 |
78 86 87
|
syl2anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( R .\/ .0. ) = R ) |
| 89 |
84 88
|
sylan9eqr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S = .0. ) -> ( R .\/ S ) = R ) |
| 90 |
89
|
oveq2d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S = .0. ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = ( ( P .\/ Q ) ./\ R ) ) |
| 91 |
90
|
eleq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S = .0. ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A <-> ( ( P .\/ Q ) ./\ R ) e. A ) ) |
| 92 |
90
|
eqeq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S = .0. ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. <-> ( ( P .\/ Q ) ./\ R ) = .0. ) ) |
| 93 |
91 92
|
orbi12d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S = .0. ) -> ( ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) <-> ( ( ( P .\/ Q ) ./\ R ) e. A \/ ( ( P .\/ Q ) ./\ R ) = .0. ) ) ) |
| 94 |
83 93
|
mpbird |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) /\ S = .0. ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |
| 95 |
|
simpr2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( S e. A \/ S = .0. ) ) |
| 96 |
76 94 95
|
mpjaodan |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ ( S e. A \/ S = .0. ) /\ ( P .\/ Q ) =/= ( R .\/ S ) ) ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A \/ ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = .0. ) ) |