Step |
Hyp |
Ref |
Expression |
1 |
|
2atm2at.j |
|- .\/ = ( join ` K ) |
2 |
|
2atm2at.m |
|- ./\ = ( meet ` K ) |
3 |
|
2atm2at.z |
|- .0. = ( 0. ` K ) |
4 |
|
2atm2at.a |
|- A = ( Atoms ` K ) |
5 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
6 |
5
|
adantr |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> K e. OP ) |
7 |
|
simpr3 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> R e. A ) |
8 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
9 |
3 8 4
|
0ltat |
|- ( ( K e. OP /\ R e. A ) -> .0. ( lt ` K ) R ) |
10 |
6 7 9
|
syl2anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> .0. ( lt ` K ) R ) |
11 |
|
simpl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> K e. HL ) |
12 |
|
simpr1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> P e. A ) |
13 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
14 |
13 1 4
|
hlatlej1 |
|- ( ( K e. HL /\ R e. A /\ P e. A ) -> R ( le ` K ) ( R .\/ P ) ) |
15 |
11 7 12 14
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> R ( le ` K ) ( R .\/ P ) ) |
16 |
|
simpr2 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> Q e. A ) |
17 |
13 1 4
|
hlatlej1 |
|- ( ( K e. HL /\ R e. A /\ Q e. A ) -> R ( le ` K ) ( R .\/ Q ) ) |
18 |
11 7 16 17
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> R ( le ` K ) ( R .\/ Q ) ) |
19 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
20 |
19
|
adantr |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> K e. Lat ) |
21 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
22 |
21 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
23 |
7 22
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> R e. ( Base ` K ) ) |
24 |
21 1 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ P e. A ) -> ( R .\/ P ) e. ( Base ` K ) ) |
25 |
11 7 12 24
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( R .\/ P ) e. ( Base ` K ) ) |
26 |
21 1 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ Q e. A ) -> ( R .\/ Q ) e. ( Base ` K ) ) |
27 |
11 7 16 26
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( R .\/ Q ) e. ( Base ` K ) ) |
28 |
21 13 2
|
latlem12 |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ ( R .\/ P ) e. ( Base ` K ) /\ ( R .\/ Q ) e. ( Base ` K ) ) ) -> ( ( R ( le ` K ) ( R .\/ P ) /\ R ( le ` K ) ( R .\/ Q ) ) <-> R ( le ` K ) ( ( R .\/ P ) ./\ ( R .\/ Q ) ) ) ) |
29 |
20 23 25 27 28
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( R ( le ` K ) ( R .\/ P ) /\ R ( le ` K ) ( R .\/ Q ) ) <-> R ( le ` K ) ( ( R .\/ P ) ./\ ( R .\/ Q ) ) ) ) |
30 |
15 18 29
|
mpbi2and |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> R ( le ` K ) ( ( R .\/ P ) ./\ ( R .\/ Q ) ) ) |
31 |
|
hlpos |
|- ( K e. HL -> K e. Poset ) |
32 |
31
|
adantr |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> K e. Poset ) |
33 |
21 3
|
op0cl |
|- ( K e. OP -> .0. e. ( Base ` K ) ) |
34 |
6 33
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> .0. e. ( Base ` K ) ) |
35 |
21 2
|
latmcl |
|- ( ( K e. Lat /\ ( R .\/ P ) e. ( Base ` K ) /\ ( R .\/ Q ) e. ( Base ` K ) ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) e. ( Base ` K ) ) |
36 |
20 25 27 35
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) e. ( Base ` K ) ) |
37 |
21 13 8
|
pltletr |
|- ( ( K e. Poset /\ ( .0. e. ( Base ` K ) /\ R e. ( Base ` K ) /\ ( ( R .\/ P ) ./\ ( R .\/ Q ) ) e. ( Base ` K ) ) ) -> ( ( .0. ( lt ` K ) R /\ R ( le ` K ) ( ( R .\/ P ) ./\ ( R .\/ Q ) ) ) -> .0. ( lt ` K ) ( ( R .\/ P ) ./\ ( R .\/ Q ) ) ) ) |
38 |
32 34 23 36 37
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( .0. ( lt ` K ) R /\ R ( le ` K ) ( ( R .\/ P ) ./\ ( R .\/ Q ) ) ) -> .0. ( lt ` K ) ( ( R .\/ P ) ./\ ( R .\/ Q ) ) ) ) |
39 |
10 30 38
|
mp2and |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> .0. ( lt ` K ) ( ( R .\/ P ) ./\ ( R .\/ Q ) ) ) |
40 |
21 8 3
|
opltn0 |
|- ( ( K e. OP /\ ( ( R .\/ P ) ./\ ( R .\/ Q ) ) e. ( Base ` K ) ) -> ( .0. ( lt ` K ) ( ( R .\/ P ) ./\ ( R .\/ Q ) ) <-> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) =/= .0. ) ) |
41 |
6 36 40
|
syl2anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( .0. ( lt ` K ) ( ( R .\/ P ) ./\ ( R .\/ Q ) ) <-> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) =/= .0. ) ) |
42 |
39 41
|
mpbid |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) =/= .0. ) |