Step |
Hyp |
Ref |
Expression |
1 |
|
2atmat.l |
|- .<_ = ( le ` K ) |
2 |
|
2atmat.j |
|- .\/ = ( join ` K ) |
3 |
|
2atmat.m |
|- ./\ = ( meet ` K ) |
4 |
|
2atmat.a |
|- A = ( Atoms ` K ) |
5 |
|
simp11 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. HL ) |
6 |
5
|
hllatd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. Lat ) |
7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
8 |
7 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
9 |
8
|
3ad2ant1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
10 |
|
simp21 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. A ) |
11 |
7 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
12 |
10 11
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. ( Base ` K ) ) |
13 |
|
simp22 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. A ) |
14 |
7 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
15 |
13 14
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. ( Base ` K ) ) |
16 |
7 2
|
latjass |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) ) |
17 |
6 9 12 15 16
|
syl13anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) ) |
18 |
|
simp33 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S .<_ ( ( P .\/ Q ) .\/ R ) ) |
19 |
7 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) |
20 |
6 9 12 19
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) |
21 |
7 1 2
|
latleeqj2 |
|- ( ( K e. Lat /\ S e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) -> ( S .<_ ( ( P .\/ Q ) .\/ R ) <-> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( P .\/ Q ) .\/ R ) ) ) |
22 |
6 15 20 21
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S .<_ ( ( P .\/ Q ) .\/ R ) <-> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( P .\/ Q ) .\/ R ) ) ) |
23 |
18 22
|
mpbid |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( P .\/ Q ) .\/ R ) ) |
24 |
17 23
|
eqtr3d |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ R ) ) |
25 |
|
simp23 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P =/= Q ) |
26 |
|
simp32 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. R .<_ ( P .\/ Q ) ) |
27 |
|
simp12 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. A ) |
28 |
|
simp13 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. A ) |
29 |
|
eqid |
|- ( LPlanes ` K ) = ( LPlanes ` K ) |
30 |
1 2 4 29
|
islpln2a |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) <-> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) |
31 |
5 27 28 10 30
|
syl13anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) <-> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) |
32 |
25 26 31
|
mpbir2and |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) ) |
33 |
24 32
|
eqeltrd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) e. ( LPlanes ` K ) ) |
34 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
35 |
2 4 34
|
llni2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. ( LLines ` K ) ) |
36 |
5 27 28 25 35
|
syl31anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .\/ Q ) e. ( LLines ` K ) ) |
37 |
|
simp31 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R =/= S ) |
38 |
2 4 34
|
llni2 |
|- ( ( ( K e. HL /\ R e. A /\ S e. A ) /\ R =/= S ) -> ( R .\/ S ) e. ( LLines ` K ) ) |
39 |
5 10 13 37 38
|
syl31anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R .\/ S ) e. ( LLines ` K ) ) |
40 |
2 3 4 34 29
|
2llnmj |
|- ( ( K e. HL /\ ( P .\/ Q ) e. ( LLines ` K ) /\ ( R .\/ S ) e. ( LLines ` K ) ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A <-> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) e. ( LPlanes ` K ) ) ) |
41 |
5 36 39 40
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A <-> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) e. ( LPlanes ` K ) ) ) |
42 |
33 41
|
mpbird |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ P =/= Q ) /\ ( R =/= S /\ -. R .<_ ( P .\/ Q ) /\ S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) e. A ) |