Step |
Hyp |
Ref |
Expression |
1 |
|
2atnelpln.j |
|- .\/ = ( join ` K ) |
2 |
|
2atnelpln.a |
|- A = ( Atoms ` K ) |
3 |
|
2atnelpln.p |
|- P = ( LPlanes ` K ) |
4 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
5 |
4
|
3ad2ant1 |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> K e. Lat ) |
6 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
7 |
6 1 2
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
8 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
9 |
6 8
|
latref |
|- ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) ) -> ( Q .\/ R ) ( le ` K ) ( Q .\/ R ) ) |
10 |
5 7 9
|
syl2anc |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) ( le ` K ) ( Q .\/ R ) ) |
11 |
|
simpl1 |
|- ( ( ( K e. HL /\ Q e. A /\ R e. A ) /\ ( Q .\/ R ) e. P ) -> K e. HL ) |
12 |
|
simpr |
|- ( ( ( K e. HL /\ Q e. A /\ R e. A ) /\ ( Q .\/ R ) e. P ) -> ( Q .\/ R ) e. P ) |
13 |
|
simpl2 |
|- ( ( ( K e. HL /\ Q e. A /\ R e. A ) /\ ( Q .\/ R ) e. P ) -> Q e. A ) |
14 |
|
simpl3 |
|- ( ( ( K e. HL /\ Q e. A /\ R e. A ) /\ ( Q .\/ R ) e. P ) -> R e. A ) |
15 |
8 1 2 3
|
lplnnle2at |
|- ( ( K e. HL /\ ( ( Q .\/ R ) e. P /\ Q e. A /\ R e. A ) ) -> -. ( Q .\/ R ) ( le ` K ) ( Q .\/ R ) ) |
16 |
11 12 13 14 15
|
syl13anc |
|- ( ( ( K e. HL /\ Q e. A /\ R e. A ) /\ ( Q .\/ R ) e. P ) -> -. ( Q .\/ R ) ( le ` K ) ( Q .\/ R ) ) |
17 |
16
|
ex |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( ( Q .\/ R ) e. P -> -. ( Q .\/ R ) ( le ` K ) ( Q .\/ R ) ) ) |
18 |
10 17
|
mt2d |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> -. ( Q .\/ R ) e. P ) |