Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
|- ( topGen ` B ) e. _V |
2 |
1
|
ssex |
|- ( C C_ ( topGen ` B ) -> C e. _V ) |
3 |
|
simpl |
|- ( ( B C_ C /\ C C_ ( topGen ` B ) ) -> B C_ C ) |
4 |
|
tgss |
|- ( ( C e. _V /\ B C_ C ) -> ( topGen ` B ) C_ ( topGen ` C ) ) |
5 |
2 3 4
|
syl2an2 |
|- ( ( B C_ C /\ C C_ ( topGen ` B ) ) -> ( topGen ` B ) C_ ( topGen ` C ) ) |
6 |
|
simpr |
|- ( ( B C_ C /\ C C_ ( topGen ` B ) ) -> C C_ ( topGen ` B ) ) |
7 |
|
ssexg |
|- ( ( B C_ C /\ C e. _V ) -> B e. _V ) |
8 |
2 7
|
sylan2 |
|- ( ( B C_ C /\ C C_ ( topGen ` B ) ) -> B e. _V ) |
9 |
|
tgss3 |
|- ( ( C e. _V /\ B e. _V ) -> ( ( topGen ` C ) C_ ( topGen ` B ) <-> C C_ ( topGen ` B ) ) ) |
10 |
2 8 9
|
syl2an2 |
|- ( ( B C_ C /\ C C_ ( topGen ` B ) ) -> ( ( topGen ` C ) C_ ( topGen ` B ) <-> C C_ ( topGen ` B ) ) ) |
11 |
6 10
|
mpbird |
|- ( ( B C_ C /\ C C_ ( topGen ` B ) ) -> ( topGen ` C ) C_ ( topGen ` B ) ) |
12 |
5 11
|
eqssd |
|- ( ( B C_ C /\ C C_ ( topGen ` B ) ) -> ( topGen ` B ) = ( topGen ` C ) ) |