| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2clwwlk.c | 
							 |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
						
							| 2 | 
							
								
							 | 
							2z | 
							 |-  2 e. ZZ  | 
						
						
							| 3 | 
							
								
							 | 
							uzid | 
							 |-  ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							ax-mp | 
							 |-  2 e. ( ZZ>= ` 2 )  | 
						
						
							| 5 | 
							
								1
							 | 
							2clwwlk | 
							 |-  ( ( X e. V /\ 2 e. ( ZZ>= ` 2 ) ) -> ( X C 2 ) = { w e. ( X ( ClWWalksNOn ` G ) 2 ) | ( w ` ( 2 - 2 ) ) = X } ) | 
						
						
							| 6 | 
							
								4 5
							 | 
							mpan2 | 
							 |-  ( X e. V -> ( X C 2 ) = { w e. ( X ( ClWWalksNOn ` G ) 2 ) | ( w ` ( 2 - 2 ) ) = X } ) | 
						
						
							| 7 | 
							
								
							 | 
							2cn | 
							 |-  2 e. CC  | 
						
						
							| 8 | 
							
								7
							 | 
							subidi | 
							 |-  ( 2 - 2 ) = 0  | 
						
						
							| 9 | 
							
								8
							 | 
							fveq2i | 
							 |-  ( w ` ( 2 - 2 ) ) = ( w ` 0 )  | 
						
						
							| 10 | 
							
								
							 | 
							isclwwlknon | 
							 |-  ( w e. ( X ( ClWWalksNOn ` G ) 2 ) <-> ( w e. ( 2 ClWWalksN G ) /\ ( w ` 0 ) = X ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							simprbi | 
							 |-  ( w e. ( X ( ClWWalksNOn ` G ) 2 ) -> ( w ` 0 ) = X )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							eqtrid | 
							 |-  ( w e. ( X ( ClWWalksNOn ` G ) 2 ) -> ( w ` ( 2 - 2 ) ) = X )  | 
						
						
							| 13 | 
							
								12
							 | 
							rabeqc | 
							 |-  { w e. ( X ( ClWWalksNOn ` G ) 2 ) | ( w ` ( 2 - 2 ) ) = X } = ( X ( ClWWalksNOn ` G ) 2 ) | 
						
						
							| 14 | 
							
								6 13
							 | 
							eqtrdi | 
							 |-  ( X e. V -> ( X C 2 ) = ( X ( ClWWalksNOn ` G ) 2 ) )  |