Step |
Hyp |
Ref |
Expression |
1 |
|
2clwwlk.c |
|- C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) |
2 |
|
2z |
|- 2 e. ZZ |
3 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
4 |
2 3
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
5 |
1
|
2clwwlk |
|- ( ( X e. V /\ 2 e. ( ZZ>= ` 2 ) ) -> ( X C 2 ) = { w e. ( X ( ClWWalksNOn ` G ) 2 ) | ( w ` ( 2 - 2 ) ) = X } ) |
6 |
4 5
|
mpan2 |
|- ( X e. V -> ( X C 2 ) = { w e. ( X ( ClWWalksNOn ` G ) 2 ) | ( w ` ( 2 - 2 ) ) = X } ) |
7 |
|
2cn |
|- 2 e. CC |
8 |
7
|
subidi |
|- ( 2 - 2 ) = 0 |
9 |
8
|
fveq2i |
|- ( w ` ( 2 - 2 ) ) = ( w ` 0 ) |
10 |
|
isclwwlknon |
|- ( w e. ( X ( ClWWalksNOn ` G ) 2 ) <-> ( w e. ( 2 ClWWalksN G ) /\ ( w ` 0 ) = X ) ) |
11 |
10
|
simprbi |
|- ( w e. ( X ( ClWWalksNOn ` G ) 2 ) -> ( w ` 0 ) = X ) |
12 |
9 11
|
syl5eq |
|- ( w e. ( X ( ClWWalksNOn ` G ) 2 ) -> ( w ` ( 2 - 2 ) ) = X ) |
13 |
12
|
rabeqc |
|- { w e. ( X ( ClWWalksNOn ` G ) 2 ) | ( w ` ( 2 - 2 ) ) = X } = ( X ( ClWWalksNOn ` G ) 2 ) |
14 |
6 13
|
eqtrdi |
|- ( X e. V -> ( X C 2 ) = ( X ( ClWWalksNOn ` G ) 2 ) ) |