Metamath Proof Explorer


Theorem 2clwwlk2

Description: The set ( X C 2 ) of double loops of length 2 on a vertex X is equal to the set of closed walks with length 2 on X . Considered as "double loops", the first of the two closed walks/loops is degenerated, i.e., has length 0. (Contributed by AV, 18-Feb-2022) (Revised by AV, 20-Apr-2022)

Ref Expression
Hypothesis 2clwwlk.c
|- C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } )
Assertion 2clwwlk2
|- ( X e. V -> ( X C 2 ) = ( X ( ClWWalksNOn ` G ) 2 ) )

Proof

Step Hyp Ref Expression
1 2clwwlk.c
 |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } )
2 2z
 |-  2 e. ZZ
3 uzid
 |-  ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) )
4 2 3 ax-mp
 |-  2 e. ( ZZ>= ` 2 )
5 1 2clwwlk
 |-  ( ( X e. V /\ 2 e. ( ZZ>= ` 2 ) ) -> ( X C 2 ) = { w e. ( X ( ClWWalksNOn ` G ) 2 ) | ( w ` ( 2 - 2 ) ) = X } )
6 4 5 mpan2
 |-  ( X e. V -> ( X C 2 ) = { w e. ( X ( ClWWalksNOn ` G ) 2 ) | ( w ` ( 2 - 2 ) ) = X } )
7 2cn
 |-  2 e. CC
8 7 subidi
 |-  ( 2 - 2 ) = 0
9 8 fveq2i
 |-  ( w ` ( 2 - 2 ) ) = ( w ` 0 )
10 isclwwlknon
 |-  ( w e. ( X ( ClWWalksNOn ` G ) 2 ) <-> ( w e. ( 2 ClWWalksN G ) /\ ( w ` 0 ) = X ) )
11 10 simprbi
 |-  ( w e. ( X ( ClWWalksNOn ` G ) 2 ) -> ( w ` 0 ) = X )
12 9 11 syl5eq
 |-  ( w e. ( X ( ClWWalksNOn ` G ) 2 ) -> ( w ` ( 2 - 2 ) ) = X )
13 12 rabeqc
 |-  { w e. ( X ( ClWWalksNOn ` G ) 2 ) | ( w ` ( 2 - 2 ) ) = X } = ( X ( ClWWalksNOn ` G ) 2 )
14 6 13 eqtrdi
 |-  ( X e. V -> ( X C 2 ) = ( X ( ClWWalksNOn ` G ) 2 ) )