| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2clwwlk.c | 
							 |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
						
							| 2 | 
							
								
							 | 
							uzuzle23 | 
							 |-  ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) )  | 
						
						
							| 3 | 
							
								1
							 | 
							2clwwlkel | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( W e. ( X C N ) <-> ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sylan2 | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. ( X C N ) <-> ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> N e. ( ZZ>= ` 3 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							anim1i | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							3anass | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) <-> ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylibr | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) )  | 
						
						
							| 9 | 
							
								
							 | 
							clwwnonrepclwwnon | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) )  | 
						
						
							| 11 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> N e. ( ZZ>= ` 3 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> W e. ( X ( ClWWalksNOn ` G ) N ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( W ` ( N - 2 ) ) = X )  | 
						
						
							| 14 | 
							
								
							 | 
							isclwwlknon | 
							 |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simpr | 
							 |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ` 0 ) = X )  | 
						
						
							| 16 | 
							
								15
							 | 
							eqcomd | 
							 |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> X = ( W ` 0 ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							sylbi | 
							 |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> X = ( W ` 0 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							ad2antrl | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> X = ( W ` 0 ) )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							eqtrd | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( W ` ( N - 2 ) ) = ( W ` 0 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							2clwwlk2clwwlklem | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W substr <. ( N - 2 ) , N >. ) e. ( X ( ClWWalksNOn ` G ) 2 ) )  | 
						
						
							| 21 | 
							
								11 12 19 20
							 | 
							syl3anc | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( W substr <. ( N - 2 ) , N >. ) e. ( X ( ClWWalksNOn ` G ) 2 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							 |-  ( Vtx ` G ) = ( Vtx ` G )  | 
						
						
							| 23 | 
							
								22
							 | 
							clwwlknbp | 
							 |-  ( W e. ( N ClWWalksN G ) -> ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) )  | 
						
						
							| 24 | 
							
								
							 | 
							opeq2 | 
							 |-  ( N = ( # ` W ) -> <. ( N - 2 ) , N >. = <. ( N - 2 ) , ( # ` W ) >. )  | 
						
						
							| 25 | 
							
								24
							 | 
							oveq2d | 
							 |-  ( N = ( # ` W ) -> ( W substr <. ( N - 2 ) , N >. ) = ( W substr <. ( N - 2 ) , ( # ` W ) >. ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							oveq2d | 
							 |-  ( N = ( # ` W ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , ( # ` W ) >. ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							eqcoms | 
							 |-  ( ( # ` W ) = N -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , ( # ` W ) >. ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							ad2antlr | 
							 |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , ( # ` W ) >. ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simpl | 
							 |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> W e. Word ( Vtx ` G ) )  | 
						
						
							| 30 | 
							
								
							 | 
							fz1ssfz0 | 
							 |-  ( 1 ... N ) C_ ( 0 ... N )  | 
						
						
							| 31 | 
							
								
							 | 
							ige3m2fz | 
							 |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. ( 1 ... N ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							sselid | 
							 |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. ( 0 ... N ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantl | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( N - 2 ) e. ( 0 ... N ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantl | 
							 |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( N - 2 ) e. ( 0 ... N ) )  | 
						
						
							| 35 | 
							
								
							 | 
							oveq2 | 
							 |-  ( ( # ` W ) = N -> ( 0 ... ( # ` W ) ) = ( 0 ... N ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							eleq2d | 
							 |-  ( ( # ` W ) = N -> ( ( N - 2 ) e. ( 0 ... ( # ` W ) ) <-> ( N - 2 ) e. ( 0 ... N ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							ad2antlr | 
							 |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( N - 2 ) e. ( 0 ... ( # ` W ) ) <-> ( N - 2 ) e. ( 0 ... N ) ) )  | 
						
						
							| 38 | 
							
								34 37
							 | 
							mpbird | 
							 |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( N - 2 ) e. ( 0 ... ( # ` W ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							pfxcctswrd | 
							 |-  ( ( W e. Word ( Vtx ` G ) /\ ( N - 2 ) e. ( 0 ... ( # ` W ) ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , ( # ` W ) >. ) ) = W )  | 
						
						
							| 40 | 
							
								29 38 39
							 | 
							syl2an2r | 
							 |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , ( # ` W ) >. ) ) = W )  | 
						
						
							| 41 | 
							
								28 40
							 | 
							eqtrd | 
							 |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = W )  | 
						
						
							| 42 | 
							
								23 41
							 | 
							sylan | 
							 |-  ( ( W e. ( N ClWWalksN G ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = W )  | 
						
						
							| 43 | 
							
								42
							 | 
							ex | 
							 |-  ( W e. ( N ClWWalksN G ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = W ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantr | 
							 |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = W ) )  | 
						
						
							| 45 | 
							
								14 44
							 | 
							sylbi | 
							 |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = W ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							adantr | 
							 |-  ( ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = W ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							impcom | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = W )  | 
						
						
							| 48 | 
							
								47
							 | 
							eqcomd | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> W = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) )  | 
						
						
							| 49 | 
							
								10 21 48
							 | 
							3jca | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ ( W substr <. ( N - 2 ) , N >. ) e. ( X ( ClWWalksNOn ` G ) 2 ) /\ W = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							ex | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ ( W substr <. ( N - 2 ) , N >. ) e. ( X ( ClWWalksNOn ` G ) 2 ) /\ W = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) ) ) )  | 
						
						
							| 51 | 
							
								4 50
							 | 
							sylbid | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. ( X C N ) -> ( ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ ( W substr <. ( N - 2 ) , N >. ) e. ( X ( ClWWalksNOn ` G ) 2 ) /\ W = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							rspceov | 
							 |-  ( ( ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ ( W substr <. ( N - 2 ) , N >. ) e. ( X ( ClWWalksNOn ` G ) 2 ) /\ W = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) ) -> E. a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) E. b e. ( X ( ClWWalksNOn ` G ) 2 ) W = ( a ++ b ) )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							syl6 | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. ( X C N ) -> E. a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) E. b e. ( X ( ClWWalksNOn ` G ) 2 ) W = ( a ++ b ) ) )  | 
						
						
							| 54 | 
							
								
							 | 
							eluzelcn | 
							 |-  ( N e. ( ZZ>= ` 3 ) -> N e. CC )  | 
						
						
							| 55 | 
							
								
							 | 
							2cnd | 
							 |-  ( N e. ( ZZ>= ` 3 ) -> 2 e. CC )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							npcand | 
							 |-  ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) + 2 ) = N )  | 
						
						
							| 57 | 
							
								56
							 | 
							adantl | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( N - 2 ) + 2 ) = N )  | 
						
						
							| 58 | 
							
								57
							 | 
							oveq2d | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X ( ClWWalksNOn ` G ) ( ( N - 2 ) + 2 ) ) = ( X ( ClWWalksNOn ` G ) N ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							eleq2d | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) ( ( N - 2 ) + 2 ) ) <-> ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) N ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							biimpd | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) ( ( N - 2 ) + 2 ) ) -> ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) N ) ) )  | 
						
						
							| 61 | 
							
								
							 | 
							clwwlknonccat | 
							 |-  ( ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ b e. ( X ( ClWWalksNOn ` G ) 2 ) ) -> ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) ( ( N - 2 ) + 2 ) ) )  | 
						
						
							| 62 | 
							
								60 61
							 | 
							impel | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ b e. ( X ( ClWWalksNOn ` G ) 2 ) ) ) -> ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) N ) )  | 
						
						
							| 63 | 
							
								
							 | 
							isclwwlknon | 
							 |-  ( b e. ( X ( ClWWalksNOn ` G ) 2 ) <-> ( b e. ( 2 ClWWalksN G ) /\ ( b ` 0 ) = X ) )  | 
						
						
							| 64 | 
							
								
							 | 
							clwwlkn2 | 
							 |-  ( b e. ( 2 ClWWalksN G ) <-> ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) /\ { ( b ` 0 ) , ( b ` 1 ) } e. ( Edg ` G ) ) ) | 
						
						
							| 65 | 
							
								
							 | 
							isclwwlknon | 
							 |-  ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( a e. ( ( N - 2 ) ClWWalksN G ) /\ ( a ` 0 ) = X ) )  | 
						
						
							| 66 | 
							
								22
							 | 
							clwwlknbp | 
							 |-  ( a e. ( ( N - 2 ) ClWWalksN G ) -> ( a e. Word ( Vtx ` G ) /\ ( # ` a ) = ( N - 2 ) ) )  | 
						
						
							| 67 | 
							
								
							 | 
							simpl | 
							 |-  ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) -> a e. Word ( Vtx ` G ) )  | 
						
						
							| 68 | 
							
								
							 | 
							simprr | 
							 |-  ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) -> b e. Word ( Vtx ` G ) )  | 
						
						
							| 69 | 
							
								
							 | 
							2nn | 
							 |-  2 e. NN  | 
						
						
							| 70 | 
							
								
							 | 
							lbfzo0 | 
							 |-  ( 0 e. ( 0 ..^ 2 ) <-> 2 e. NN )  | 
						
						
							| 71 | 
							
								69 70
							 | 
							mpbir | 
							 |-  0 e. ( 0 ..^ 2 )  | 
						
						
							| 72 | 
							
								
							 | 
							oveq2 | 
							 |-  ( ( # ` b ) = 2 -> ( 0 ..^ ( # ` b ) ) = ( 0 ..^ 2 ) )  | 
						
						
							| 73 | 
							
								71 72
							 | 
							eleqtrrid | 
							 |-  ( ( # ` b ) = 2 -> 0 e. ( 0 ..^ ( # ` b ) ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							ad2antrl | 
							 |-  ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) -> 0 e. ( 0 ..^ ( # ` b ) ) )  | 
						
						
							| 75 | 
							
								67 68 74
							 | 
							3jca | 
							 |-  ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) -> ( a e. Word ( Vtx ` G ) /\ b e. Word ( Vtx ` G ) /\ 0 e. ( 0 ..^ ( # ` b ) ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							adantr | 
							 |-  ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) -> ( a e. Word ( Vtx ` G ) /\ b e. Word ( Vtx ` G ) /\ 0 e. ( 0 ..^ ( # ` b ) ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							adantr | 
							 |-  ( ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( a e. Word ( Vtx ` G ) /\ b e. Word ( Vtx ` G ) /\ 0 e. ( 0 ..^ ( # ` b ) ) ) )  | 
						
						
							| 78 | 
							
								
							 | 
							ccatval3 | 
							 |-  ( ( a e. Word ( Vtx ` G ) /\ b e. Word ( Vtx ` G ) /\ 0 e. ( 0 ..^ ( # ` b ) ) ) -> ( ( a ++ b ) ` ( 0 + ( # ` a ) ) ) = ( b ` 0 ) )  | 
						
						
							| 79 | 
							
								77 78
							 | 
							syl | 
							 |-  ( ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( a ++ b ) ` ( 0 + ( # ` a ) ) ) = ( b ` 0 ) )  | 
						
						
							| 80 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) -> ( # ` a ) = ( N - 2 ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							oveq2d | 
							 |-  ( ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) -> ( 0 + ( # ` a ) ) = ( 0 + ( N - 2 ) ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							adantl | 
							 |-  ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) -> ( 0 + ( # ` a ) ) = ( 0 + ( N - 2 ) ) )  | 
						
						
							| 83 | 
							
								54 55
							 | 
							subcld | 
							 |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. CC )  | 
						
						
							| 84 | 
							
								83
							 | 
							addlidd | 
							 |-  ( N e. ( ZZ>= ` 3 ) -> ( 0 + ( N - 2 ) ) = ( N - 2 ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							adantl | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( 0 + ( N - 2 ) ) = ( N - 2 ) )  | 
						
						
							| 86 | 
							
								82 85
							 | 
							sylan9eq | 
							 |-  ( ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( 0 + ( # ` a ) ) = ( N - 2 ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							eqcomd | 
							 |-  ( ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( N - 2 ) = ( 0 + ( # ` a ) ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							fveq2d | 
							 |-  ( ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = ( ( a ++ b ) ` ( 0 + ( # ` a ) ) ) )  | 
						
						
							| 89 | 
							
								
							 | 
							simpl | 
							 |-  ( ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) -> ( b ` 0 ) = X )  | 
						
						
							| 90 | 
							
								89
							 | 
							eqcomd | 
							 |-  ( ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) -> X = ( b ` 0 ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							ad2antlr | 
							 |-  ( ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> X = ( b ` 0 ) )  | 
						
						
							| 92 | 
							
								79 88 91
							 | 
							3eqtr4d | 
							 |-  ( ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X )  | 
						
						
							| 93 | 
							
								92
							 | 
							exp53 | 
							 |-  ( a e. Word ( Vtx ` G ) -> ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) -> ( ( b ` 0 ) = X -> ( ( # ` a ) = ( N - 2 ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							com24 | 
							 |-  ( a e. Word ( Vtx ` G ) -> ( ( # ` a ) = ( N - 2 ) -> ( ( b ` 0 ) = X -> ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							imp | 
							 |-  ( ( a e. Word ( Vtx ` G ) /\ ( # ` a ) = ( N - 2 ) ) -> ( ( b ` 0 ) = X -> ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) )  | 
						
						
							| 96 | 
							
								66 95
							 | 
							syl | 
							 |-  ( a e. ( ( N - 2 ) ClWWalksN G ) -> ( ( b ` 0 ) = X -> ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							adantr | 
							 |-  ( ( a e. ( ( N - 2 ) ClWWalksN G ) /\ ( a ` 0 ) = X ) -> ( ( b ` 0 ) = X -> ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) )  | 
						
						
							| 98 | 
							
								65 97
							 | 
							sylbi | 
							 |-  ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) -> ( ( b ` 0 ) = X -> ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							com13 | 
							 |-  ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) -> ( ( b ` 0 ) = X -> ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) )  | 
						
						
							| 100 | 
							
								99
							 | 
							3adant3 | 
							 |-  ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) /\ { ( b ` 0 ) , ( b ` 1 ) } e. ( Edg ` G ) ) -> ( ( b ` 0 ) = X -> ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) ) | 
						
						
							| 101 | 
							
								64 100
							 | 
							sylbi | 
							 |-  ( b e. ( 2 ClWWalksN G ) -> ( ( b ` 0 ) = X -> ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							imp | 
							 |-  ( ( b e. ( 2 ClWWalksN G ) /\ ( b ` 0 ) = X ) -> ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) )  | 
						
						
							| 103 | 
							
								63 102
							 | 
							sylbi | 
							 |-  ( b e. ( X ( ClWWalksNOn ` G ) 2 ) -> ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							impcom | 
							 |-  ( ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ b e. ( X ( ClWWalksNOn ` G ) 2 ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							impcom | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ b e. ( X ( ClWWalksNOn ` G ) 2 ) ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X )  | 
						
						
							| 106 | 
							
								1
							 | 
							2clwwlkel | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( ( a ++ b ) e. ( X C N ) <-> ( ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) N ) /\ ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) )  | 
						
						
							| 107 | 
							
								2 106
							 | 
							sylan2 | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) e. ( X C N ) <-> ( ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) N ) /\ ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							adantr | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ b e. ( X ( ClWWalksNOn ` G ) 2 ) ) ) -> ( ( a ++ b ) e. ( X C N ) <-> ( ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) N ) /\ ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) )  | 
						
						
							| 109 | 
							
								62 105 108
							 | 
							mpbir2and | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ b e. ( X ( ClWWalksNOn ` G ) 2 ) ) ) -> ( a ++ b ) e. ( X C N ) )  | 
						
						
							| 110 | 
							
								
							 | 
							eleq1 | 
							 |-  ( W = ( a ++ b ) -> ( W e. ( X C N ) <-> ( a ++ b ) e. ( X C N ) ) )  | 
						
						
							| 111 | 
							
								109 110
							 | 
							syl5ibrcom | 
							 |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ b e. ( X ( ClWWalksNOn ` G ) 2 ) ) ) -> ( W = ( a ++ b ) -> W e. ( X C N ) ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							rexlimdvva | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( E. a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) E. b e. ( X ( ClWWalksNOn ` G ) 2 ) W = ( a ++ b ) -> W e. ( X C N ) ) )  | 
						
						
							| 113 | 
							
								53 112
							 | 
							impbid | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. ( X C N ) <-> E. a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) E. b e. ( X ( ClWWalksNOn ` G ) 2 ) W = ( a ++ b ) ) )  |