Step |
Hyp |
Ref |
Expression |
1 |
|
2clwwlk.c |
|- C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) |
2 |
1
|
2clwwlk |
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) |
3 |
2
|
eleq2d |
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( W e. ( X C N ) <-> W e. { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) ) |
4 |
|
fveq1 |
|- ( w = W -> ( w ` ( N - 2 ) ) = ( W ` ( N - 2 ) ) ) |
5 |
4
|
eqeq1d |
|- ( w = W -> ( ( w ` ( N - 2 ) ) = X <-> ( W ` ( N - 2 ) ) = X ) ) |
6 |
5
|
elrab |
|- ( W e. { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } <-> ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) |
7 |
3 6
|
bitrdi |
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( W e. ( X C N ) <-> ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) ) |