Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
1
|
clwwlknwrd |
|- ( W e. ( N ClWWalksN G ) -> W e. Word ( Vtx ` G ) ) |
3 |
|
ige3m2fz |
|- ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. ( 1 ... N ) ) |
4 |
3
|
adantl |
|- ( ( W e. ( N ClWWalksN G ) /\ N e. ( ZZ>= ` 3 ) ) -> ( N - 2 ) e. ( 1 ... N ) ) |
5 |
|
clwwlknlen |
|- ( W e. ( N ClWWalksN G ) -> ( # ` W ) = N ) |
6 |
5
|
oveq2d |
|- ( W e. ( N ClWWalksN G ) -> ( 1 ... ( # ` W ) ) = ( 1 ... N ) ) |
7 |
6
|
eleq2d |
|- ( W e. ( N ClWWalksN G ) -> ( ( N - 2 ) e. ( 1 ... ( # ` W ) ) <-> ( N - 2 ) e. ( 1 ... N ) ) ) |
8 |
7
|
adantr |
|- ( ( W e. ( N ClWWalksN G ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( N - 2 ) e. ( 1 ... ( # ` W ) ) <-> ( N - 2 ) e. ( 1 ... N ) ) ) |
9 |
4 8
|
mpbird |
|- ( ( W e. ( N ClWWalksN G ) /\ N e. ( ZZ>= ` 3 ) ) -> ( N - 2 ) e. ( 1 ... ( # ` W ) ) ) |
10 |
|
pfxfv0 |
|- ( ( W e. Word ( Vtx ` G ) /\ ( N - 2 ) e. ( 1 ... ( # ` W ) ) ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = ( W ` 0 ) ) |
11 |
2 9 10
|
syl2an2r |
|- ( ( W e. ( N ClWWalksN G ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = ( W ` 0 ) ) |