Metamath Proof Explorer


Theorem 2cprodeq2dv

Description: Equality deduction for double product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypothesis 2cprodeq2dv.1
|- ( ( ph /\ j e. A /\ k e. B ) -> C = D )
Assertion 2cprodeq2dv
|- ( ph -> prod_ j e. A prod_ k e. B C = prod_ j e. A prod_ k e. B D )

Proof

Step Hyp Ref Expression
1 2cprodeq2dv.1
 |-  ( ( ph /\ j e. A /\ k e. B ) -> C = D )
2 1 3expa
 |-  ( ( ( ph /\ j e. A ) /\ k e. B ) -> C = D )
3 2 prodeq2dv
 |-  ( ( ph /\ j e. A ) -> prod_ k e. B C = prod_ k e. B D )
4 3 prodeq2dv
 |-  ( ph -> prod_ j e. A prod_ k e. B C = prod_ j e. A prod_ k e. B D )