Step |
Hyp |
Ref |
Expression |
1 |
|
cshwlen |
|- ( ( W e. Word V /\ M e. ZZ ) -> ( # ` ( W cyclShift M ) ) = ( # ` W ) ) |
2 |
1
|
3adant3 |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( # ` ( W cyclShift M ) ) = ( # ` W ) ) |
3 |
|
cshwcl |
|- ( W e. Word V -> ( W cyclShift M ) e. Word V ) |
4 |
|
cshwlen |
|- ( ( ( W cyclShift M ) e. Word V /\ N e. ZZ ) -> ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` ( W cyclShift M ) ) ) |
5 |
3 4
|
sylan |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` ( W cyclShift M ) ) ) |
6 |
5
|
3adant2 |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` ( W cyclShift M ) ) ) |
7 |
|
simp1 |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> W e. Word V ) |
8 |
|
zaddcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) |
9 |
8
|
3adant1 |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) |
10 |
|
cshwlen |
|- ( ( W e. Word V /\ ( M + N ) e. ZZ ) -> ( # ` ( W cyclShift ( M + N ) ) ) = ( # ` W ) ) |
11 |
7 9 10
|
syl2anc |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( # ` ( W cyclShift ( M + N ) ) ) = ( # ` W ) ) |
12 |
2 6 11
|
3eqtr4d |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` ( W cyclShift ( M + N ) ) ) ) |
13 |
6 2
|
eqtrd |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` W ) ) |
14 |
13
|
oveq2d |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( 0 ..^ ( # ` ( ( W cyclShift M ) cyclShift N ) ) ) = ( 0 ..^ ( # ` W ) ) ) |
15 |
14
|
eleq2d |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( i e. ( 0 ..^ ( # ` ( ( W cyclShift M ) cyclShift N ) ) ) <-> i e. ( 0 ..^ ( # ` W ) ) ) ) |
16 |
3
|
3ad2ant1 |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( W cyclShift M ) e. Word V ) |
17 |
16
|
adantr |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W cyclShift M ) e. Word V ) |
18 |
|
simpl3 |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> N e. ZZ ) |
19 |
2
|
oveq2d |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( 0 ..^ ( # ` ( W cyclShift M ) ) ) = ( 0 ..^ ( # ` W ) ) ) |
20 |
19
|
eleq2d |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( i e. ( 0 ..^ ( # ` ( W cyclShift M ) ) ) <-> i e. ( 0 ..^ ( # ` W ) ) ) ) |
21 |
20
|
biimpar |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` ( W cyclShift M ) ) ) ) |
22 |
|
cshwidxmod |
|- ( ( ( W cyclShift M ) e. Word V /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` ( W cyclShift M ) ) ) ) -> ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift M ) ` ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) ) ) |
23 |
17 18 21 22
|
syl3anc |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift M ) ` ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) ) ) |
24 |
|
simpl1 |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> W e. Word V ) |
25 |
|
simpl2 |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> M e. ZZ ) |
26 |
|
elfzo0 |
|- ( i e. ( 0 ..^ ( # ` W ) ) <-> ( i e. NN0 /\ ( # ` W ) e. NN /\ i < ( # ` W ) ) ) |
27 |
|
nn0z |
|- ( i e. NN0 -> i e. ZZ ) |
28 |
27
|
ad2antrr |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) ) -> i e. ZZ ) |
29 |
|
simpr3 |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) ) -> N e. ZZ ) |
30 |
28 29
|
zaddcld |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) ) -> ( i + N ) e. ZZ ) |
31 |
|
simplr |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) ) -> ( # ` W ) e. NN ) |
32 |
30 31
|
jca |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) ) -> ( ( i + N ) e. ZZ /\ ( # ` W ) e. NN ) ) |
33 |
32
|
ex |
|- ( ( i e. NN0 /\ ( # ` W ) e. NN ) -> ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( ( i + N ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
34 |
33
|
3adant3 |
|- ( ( i e. NN0 /\ ( # ` W ) e. NN /\ i < ( # ` W ) ) -> ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( ( i + N ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
35 |
26 34
|
sylbi |
|- ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( ( i + N ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
36 |
35
|
impcom |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) e. ZZ /\ ( # ` W ) e. NN ) ) |
37 |
|
zmodfzo |
|- ( ( ( i + N ) e. ZZ /\ ( # ` W ) e. NN ) -> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
38 |
36 37
|
syl |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
39 |
1
|
oveq2d |
|- ( ( W e. Word V /\ M e. ZZ ) -> ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) = ( ( i + N ) mod ( # ` W ) ) ) |
40 |
39
|
eleq1d |
|- ( ( W e. Word V /\ M e. ZZ ) -> ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) ) |
41 |
40
|
3adant3 |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) ) |
42 |
41
|
adantr |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) ) |
43 |
38 42
|
mpbird |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) e. ( 0 ..^ ( # ` W ) ) ) |
44 |
|
cshwidxmod |
|- ( ( W e. Word V /\ M e. ZZ /\ ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift M ) ` ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) ) = ( W ` ( ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) + M ) mod ( # ` W ) ) ) ) |
45 |
24 25 43 44
|
syl3anc |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift M ) ` ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) ) = ( W ` ( ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) + M ) mod ( # ` W ) ) ) ) |
46 |
|
nn0re |
|- ( i e. NN0 -> i e. RR ) |
47 |
46
|
ad2antrr |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> i e. RR ) |
48 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
49 |
48
|
ad2antll |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> N e. RR ) |
50 |
47 49
|
readdcld |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( i + N ) e. RR ) |
51 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
52 |
51
|
ad2antrl |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> M e. RR ) |
53 |
|
nnrp |
|- ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) |
54 |
53
|
ad2antlr |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( # ` W ) e. RR+ ) |
55 |
|
modaddmod |
|- ( ( ( i + N ) e. RR /\ M e. RR /\ ( # ` W ) e. RR+ ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( ( i + N ) + M ) mod ( # ` W ) ) ) |
56 |
50 52 54 55
|
syl3anc |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( ( i + N ) + M ) mod ( # ` W ) ) ) |
57 |
|
nn0cn |
|- ( i e. NN0 -> i e. CC ) |
58 |
57
|
ad2antrr |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> i e. CC ) |
59 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
60 |
59
|
ad2antrl |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> M e. CC ) |
61 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
62 |
61
|
ad2antll |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> N e. CC ) |
63 |
|
add32r |
|- ( ( i e. CC /\ M e. CC /\ N e. CC ) -> ( i + ( M + N ) ) = ( ( i + N ) + M ) ) |
64 |
58 60 62 63
|
syl3anc |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( i + ( M + N ) ) = ( ( i + N ) + M ) ) |
65 |
64
|
oveq1d |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( i + ( M + N ) ) mod ( # ` W ) ) = ( ( ( i + N ) + M ) mod ( # ` W ) ) ) |
66 |
56 65
|
eqtr4d |
|- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( i + ( M + N ) ) mod ( # ` W ) ) ) |
67 |
66
|
ex |
|- ( ( i e. NN0 /\ ( # ` W ) e. NN ) -> ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( i + ( M + N ) ) mod ( # ` W ) ) ) ) |
68 |
67
|
3adant3 |
|- ( ( i e. NN0 /\ ( # ` W ) e. NN /\ i < ( # ` W ) ) -> ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( i + ( M + N ) ) mod ( # ` W ) ) ) ) |
69 |
26 68
|
sylbi |
|- ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( i + ( M + N ) ) mod ( # ` W ) ) ) ) |
70 |
69
|
impcom |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( i + ( M + N ) ) mod ( # ` W ) ) ) |
71 |
70
|
3adantl1 |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( i + ( M + N ) ) mod ( # ` W ) ) ) |
72 |
71
|
fveq2d |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) ) = ( W ` ( ( i + ( M + N ) ) mod ( # ` W ) ) ) ) |
73 |
2
|
adantr |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` ( W cyclShift M ) ) = ( # ` W ) ) |
74 |
73
|
oveq2d |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) = ( ( i + N ) mod ( # ` W ) ) ) |
75 |
74
|
oveq1d |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) + M ) = ( ( ( i + N ) mod ( # ` W ) ) + M ) ) |
76 |
75
|
fvoveq1d |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) + M ) mod ( # ` W ) ) ) = ( W ` ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) ) ) |
77 |
9
|
adantr |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( M + N ) e. ZZ ) |
78 |
|
simpr |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` W ) ) ) |
79 |
|
cshwidxmod |
|- ( ( W e. Word V /\ ( M + N ) e. ZZ /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift ( M + N ) ) ` i ) = ( W ` ( ( i + ( M + N ) ) mod ( # ` W ) ) ) ) |
80 |
24 77 78 79
|
syl3anc |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift ( M + N ) ) ` i ) = ( W ` ( ( i + ( M + N ) ) mod ( # ` W ) ) ) ) |
81 |
72 76 80
|
3eqtr4d |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) + M ) mod ( # ` W ) ) ) = ( ( W cyclShift ( M + N ) ) ` i ) ) |
82 |
23 45 81
|
3eqtrd |
|- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift ( M + N ) ) ` i ) ) |
83 |
82
|
ex |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift ( M + N ) ) ` i ) ) ) |
84 |
15 83
|
sylbid |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( i e. ( 0 ..^ ( # ` ( ( W cyclShift M ) cyclShift N ) ) ) -> ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift ( M + N ) ) ` i ) ) ) |
85 |
84
|
ralrimiv |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> A. i e. ( 0 ..^ ( # ` ( ( W cyclShift M ) cyclShift N ) ) ) ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift ( M + N ) ) ` i ) ) |
86 |
|
cshwcl |
|- ( ( W cyclShift M ) e. Word V -> ( ( W cyclShift M ) cyclShift N ) e. Word V ) |
87 |
3 86
|
syl |
|- ( W e. Word V -> ( ( W cyclShift M ) cyclShift N ) e. Word V ) |
88 |
|
cshwcl |
|- ( W e. Word V -> ( W cyclShift ( M + N ) ) e. Word V ) |
89 |
|
eqwrd |
|- ( ( ( ( W cyclShift M ) cyclShift N ) e. Word V /\ ( W cyclShift ( M + N ) ) e. Word V ) -> ( ( ( W cyclShift M ) cyclShift N ) = ( W cyclShift ( M + N ) ) <-> ( ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` ( W cyclShift ( M + N ) ) ) /\ A. i e. ( 0 ..^ ( # ` ( ( W cyclShift M ) cyclShift N ) ) ) ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift ( M + N ) ) ` i ) ) ) ) |
90 |
87 88 89
|
syl2anc |
|- ( W e. Word V -> ( ( ( W cyclShift M ) cyclShift N ) = ( W cyclShift ( M + N ) ) <-> ( ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` ( W cyclShift ( M + N ) ) ) /\ A. i e. ( 0 ..^ ( # ` ( ( W cyclShift M ) cyclShift N ) ) ) ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift ( M + N ) ) ` i ) ) ) ) |
91 |
90
|
3ad2ant1 |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( W cyclShift M ) cyclShift N ) = ( W cyclShift ( M + N ) ) <-> ( ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` ( W cyclShift ( M + N ) ) ) /\ A. i e. ( 0 ..^ ( # ` ( ( W cyclShift M ) cyclShift N ) ) ) ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift ( M + N ) ) ` i ) ) ) ) |
92 |
12 85 91
|
mpbir2and |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( ( W cyclShift M ) cyclShift N ) = ( W cyclShift ( M + N ) ) ) |