| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn |  |-  ( M e. ZZ -> M e. CC ) | 
						
							| 2 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 3 |  | addcom |  |-  ( ( M e. CC /\ N e. CC ) -> ( M + N ) = ( N + M ) ) | 
						
							| 4 | 1 2 3 | syl2anr |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( M + N ) = ( N + M ) ) | 
						
							| 5 | 4 | 3adant1 |  |-  ( ( W e. Word V /\ N e. ZZ /\ M e. ZZ ) -> ( M + N ) = ( N + M ) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( ( W e. Word V /\ N e. ZZ /\ M e. ZZ ) -> ( W cyclShift ( M + N ) ) = ( W cyclShift ( N + M ) ) ) | 
						
							| 7 |  | 2cshw |  |-  ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( ( W cyclShift M ) cyclShift N ) = ( W cyclShift ( M + N ) ) ) | 
						
							| 8 | 7 | 3com23 |  |-  ( ( W e. Word V /\ N e. ZZ /\ M e. ZZ ) -> ( ( W cyclShift M ) cyclShift N ) = ( W cyclShift ( M + N ) ) ) | 
						
							| 9 |  | 2cshw |  |-  ( ( W e. Word V /\ N e. ZZ /\ M e. ZZ ) -> ( ( W cyclShift N ) cyclShift M ) = ( W cyclShift ( N + M ) ) ) | 
						
							| 10 | 6 8 9 | 3eqtr4rd |  |-  ( ( W e. Word V /\ N e. ZZ /\ M e. ZZ ) -> ( ( W cyclShift N ) cyclShift M ) = ( ( W cyclShift M ) cyclShift N ) ) |