Metamath Proof Explorer


Theorem 2dvdsoddp1

Description: 2 divides an odd number increased by 1. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion 2dvdsoddp1
|- ( Z e. Odd -> 2 || ( Z + 1 ) )

Proof

Step Hyp Ref Expression
1 2ndvdsodd
 |-  ( Z e. Odd -> -. 2 || Z )
2 oddz
 |-  ( Z e. Odd -> Z e. ZZ )
3 oddp1even
 |-  ( Z e. ZZ -> ( -. 2 || Z <-> 2 || ( Z + 1 ) ) )
4 2 3 syl
 |-  ( Z e. Odd -> ( -. 2 || Z <-> 2 || ( Z + 1 ) ) )
5 1 4 mpbid
 |-  ( Z e. Odd -> 2 || ( Z + 1 ) )