Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
|- 2 e. NN |
2 |
1
|
a1i |
|- ( N e. NN0 -> 2 e. NN ) |
3 |
|
id |
|- ( N e. NN0 -> N e. NN0 ) |
4 |
2 3
|
nnexpcld |
|- ( N e. NN0 -> ( 2 ^ N ) e. NN ) |
5 |
4
|
nncnd |
|- ( N e. NN0 -> ( 2 ^ N ) e. CC ) |
6 |
|
oveq2 |
|- ( k = N -> ( 2 ^ k ) = ( 2 ^ N ) ) |
7 |
6
|
sumsn |
|- ( ( N e. NN0 /\ ( 2 ^ N ) e. CC ) -> sum_ k e. { N } ( 2 ^ k ) = ( 2 ^ N ) ) |
8 |
5 7
|
mpdan |
|- ( N e. NN0 -> sum_ k e. { N } ( 2 ^ k ) = ( 2 ^ N ) ) |
9 |
8
|
fveq2d |
|- ( N e. NN0 -> ( bits ` sum_ k e. { N } ( 2 ^ k ) ) = ( bits ` ( 2 ^ N ) ) ) |
10 |
|
snssi |
|- ( N e. NN0 -> { N } C_ NN0 ) |
11 |
|
snfi |
|- { N } e. Fin |
12 |
|
elfpw |
|- ( { N } e. ( ~P NN0 i^i Fin ) <-> ( { N } C_ NN0 /\ { N } e. Fin ) ) |
13 |
10 11 12
|
sylanblrc |
|- ( N e. NN0 -> { N } e. ( ~P NN0 i^i Fin ) ) |
14 |
|
bitsinv2 |
|- ( { N } e. ( ~P NN0 i^i Fin ) -> ( bits ` sum_ k e. { N } ( 2 ^ k ) ) = { N } ) |
15 |
13 14
|
syl |
|- ( N e. NN0 -> ( bits ` sum_ k e. { N } ( 2 ^ k ) ) = { N } ) |
16 |
9 15
|
eqtr3d |
|- ( N e. NN0 -> ( bits ` ( 2 ^ N ) ) = { N } ) |