| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn |  |-  2 e. NN | 
						
							| 2 | 1 | a1i |  |-  ( N e. NN0 -> 2 e. NN ) | 
						
							| 3 |  | id |  |-  ( N e. NN0 -> N e. NN0 ) | 
						
							| 4 | 2 3 | nnexpcld |  |-  ( N e. NN0 -> ( 2 ^ N ) e. NN ) | 
						
							| 5 | 4 | nncnd |  |-  ( N e. NN0 -> ( 2 ^ N ) e. CC ) | 
						
							| 6 |  | oveq2 |  |-  ( k = N -> ( 2 ^ k ) = ( 2 ^ N ) ) | 
						
							| 7 | 6 | sumsn |  |-  ( ( N e. NN0 /\ ( 2 ^ N ) e. CC ) -> sum_ k e. { N } ( 2 ^ k ) = ( 2 ^ N ) ) | 
						
							| 8 | 5 7 | mpdan |  |-  ( N e. NN0 -> sum_ k e. { N } ( 2 ^ k ) = ( 2 ^ N ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( N e. NN0 -> ( bits ` sum_ k e. { N } ( 2 ^ k ) ) = ( bits ` ( 2 ^ N ) ) ) | 
						
							| 10 |  | snssi |  |-  ( N e. NN0 -> { N } C_ NN0 ) | 
						
							| 11 |  | snfi |  |-  { N } e. Fin | 
						
							| 12 |  | elfpw |  |-  ( { N } e. ( ~P NN0 i^i Fin ) <-> ( { N } C_ NN0 /\ { N } e. Fin ) ) | 
						
							| 13 | 10 11 12 | sylanblrc |  |-  ( N e. NN0 -> { N } e. ( ~P NN0 i^i Fin ) ) | 
						
							| 14 |  | bitsinv2 |  |-  ( { N } e. ( ~P NN0 i^i Fin ) -> ( bits ` sum_ k e. { N } ( 2 ^ k ) ) = { N } ) | 
						
							| 15 | 13 14 | syl |  |-  ( N e. NN0 -> ( bits ` sum_ k e. { N } ( 2 ^ k ) ) = { N } ) | 
						
							| 16 | 9 15 | eqtr3d |  |-  ( N e. NN0 -> ( bits ` ( 2 ^ N ) ) = { N } ) |