| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atanval |
|- ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 2 |
1
|
oveq2d |
|- ( A e. dom arctan -> ( ( 2 x. _i ) x. ( arctan ` A ) ) = ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 3 |
|
2cn |
|- 2 e. CC |
| 4 |
3
|
a1i |
|- ( A e. dom arctan -> 2 e. CC ) |
| 5 |
|
ax-icn |
|- _i e. CC |
| 6 |
5
|
a1i |
|- ( A e. dom arctan -> _i e. CC ) |
| 7 |
|
atancl |
|- ( A e. dom arctan -> ( arctan ` A ) e. CC ) |
| 8 |
4 6 7
|
mulassd |
|- ( A e. dom arctan -> ( ( 2 x. _i ) x. ( arctan ` A ) ) = ( 2 x. ( _i x. ( arctan ` A ) ) ) ) |
| 9 |
|
halfcl |
|- ( _i e. CC -> ( _i / 2 ) e. CC ) |
| 10 |
5 9
|
ax-mp |
|- ( _i / 2 ) e. CC |
| 11 |
3 5 10
|
mulassi |
|- ( ( 2 x. _i ) x. ( _i / 2 ) ) = ( 2 x. ( _i x. ( _i / 2 ) ) ) |
| 12 |
3 5 10
|
mul12i |
|- ( 2 x. ( _i x. ( _i / 2 ) ) ) = ( _i x. ( 2 x. ( _i / 2 ) ) ) |
| 13 |
|
2ne0 |
|- 2 =/= 0 |
| 14 |
5 3 13
|
divcan2i |
|- ( 2 x. ( _i / 2 ) ) = _i |
| 15 |
14
|
oveq2i |
|- ( _i x. ( 2 x. ( _i / 2 ) ) ) = ( _i x. _i ) |
| 16 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
| 17 |
15 16
|
eqtri |
|- ( _i x. ( 2 x. ( _i / 2 ) ) ) = -u 1 |
| 18 |
11 12 17
|
3eqtri |
|- ( ( 2 x. _i ) x. ( _i / 2 ) ) = -u 1 |
| 19 |
18
|
oveq1i |
|- ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( -u 1 x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 20 |
|
ax-1cn |
|- 1 e. CC |
| 21 |
|
atandm2 |
|- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
| 22 |
21
|
simp1bi |
|- ( A e. dom arctan -> A e. CC ) |
| 23 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 24 |
5 22 23
|
sylancr |
|- ( A e. dom arctan -> ( _i x. A ) e. CC ) |
| 25 |
|
subcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
| 26 |
20 24 25
|
sylancr |
|- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) |
| 27 |
21
|
simp2bi |
|- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 28 |
26 27
|
logcld |
|- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 29 |
|
addcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
| 30 |
20 24 29
|
sylancr |
|- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) |
| 31 |
21
|
simp3bi |
|- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 32 |
30 31
|
logcld |
|- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 33 |
28 32
|
subcld |
|- ( A e. dom arctan -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 34 |
33
|
mulm1d |
|- ( A e. dom arctan -> ( -u 1 x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 35 |
19 34
|
eqtrid |
|- ( A e. dom arctan -> ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 36 |
|
2mulicn |
|- ( 2 x. _i ) e. CC |
| 37 |
36
|
a1i |
|- ( A e. dom arctan -> ( 2 x. _i ) e. CC ) |
| 38 |
10
|
a1i |
|- ( A e. dom arctan -> ( _i / 2 ) e. CC ) |
| 39 |
37 38 33
|
mulassd |
|- ( A e. dom arctan -> ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 40 |
28 32
|
negsubdi2d |
|- ( A e. dom arctan -> -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 41 |
35 39 40
|
3eqtr3d |
|- ( A e. dom arctan -> ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 42 |
2 8 41
|
3eqtr3d |
|- ( A e. dom arctan -> ( 2 x. ( _i x. ( arctan ` A ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 43 |
42
|
fveq2d |
|- ( A e. dom arctan -> ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) = ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 44 |
|
efsub |
|- ( ( ( log ` ( 1 + ( _i x. A ) ) ) e. CC /\ ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) -> ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 45 |
32 28 44
|
syl2anc |
|- ( A e. dom arctan -> ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 46 |
|
eflog |
|- ( ( ( 1 + ( _i x. A ) ) e. CC /\ ( 1 + ( _i x. A ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( 1 + ( _i x. A ) ) ) |
| 47 |
30 31 46
|
syl2anc |
|- ( A e. dom arctan -> ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( 1 + ( _i x. A ) ) ) |
| 48 |
|
eflog |
|- ( ( ( 1 - ( _i x. A ) ) e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( 1 - ( _i x. A ) ) ) |
| 49 |
26 27 48
|
syl2anc |
|- ( A e. dom arctan -> ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( 1 - ( _i x. A ) ) ) |
| 50 |
47 49
|
oveq12d |
|- ( A e. dom arctan -> ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( 1 + ( _i x. A ) ) / ( 1 - ( _i x. A ) ) ) ) |
| 51 |
|
negsub |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i + -u A ) = ( _i - A ) ) |
| 52 |
5 22 51
|
sylancr |
|- ( A e. dom arctan -> ( _i + -u A ) = ( _i - A ) ) |
| 53 |
6
|
mulridd |
|- ( A e. dom arctan -> ( _i x. 1 ) = _i ) |
| 54 |
16
|
oveq1i |
|- ( ( _i x. _i ) x. A ) = ( -u 1 x. A ) |
| 55 |
6 6 22
|
mulassd |
|- ( A e. dom arctan -> ( ( _i x. _i ) x. A ) = ( _i x. ( _i x. A ) ) ) |
| 56 |
22
|
mulm1d |
|- ( A e. dom arctan -> ( -u 1 x. A ) = -u A ) |
| 57 |
54 55 56
|
3eqtr3a |
|- ( A e. dom arctan -> ( _i x. ( _i x. A ) ) = -u A ) |
| 58 |
53 57
|
oveq12d |
|- ( A e. dom arctan -> ( ( _i x. 1 ) + ( _i x. ( _i x. A ) ) ) = ( _i + -u A ) ) |
| 59 |
6 22 6
|
pnpcan2d |
|- ( A e. dom arctan -> ( ( _i + _i ) - ( A + _i ) ) = ( _i - A ) ) |
| 60 |
52 58 59
|
3eqtr4d |
|- ( A e. dom arctan -> ( ( _i x. 1 ) + ( _i x. ( _i x. A ) ) ) = ( ( _i + _i ) - ( A + _i ) ) ) |
| 61 |
20
|
a1i |
|- ( A e. dom arctan -> 1 e. CC ) |
| 62 |
6 61 24
|
adddid |
|- ( A e. dom arctan -> ( _i x. ( 1 + ( _i x. A ) ) ) = ( ( _i x. 1 ) + ( _i x. ( _i x. A ) ) ) ) |
| 63 |
6
|
2timesd |
|- ( A e. dom arctan -> ( 2 x. _i ) = ( _i + _i ) ) |
| 64 |
63
|
oveq1d |
|- ( A e. dom arctan -> ( ( 2 x. _i ) - ( A + _i ) ) = ( ( _i + _i ) - ( A + _i ) ) ) |
| 65 |
60 62 64
|
3eqtr4d |
|- ( A e. dom arctan -> ( _i x. ( 1 + ( _i x. A ) ) ) = ( ( 2 x. _i ) - ( A + _i ) ) ) |
| 66 |
6 61 24
|
subdid |
|- ( A e. dom arctan -> ( _i x. ( 1 - ( _i x. A ) ) ) = ( ( _i x. 1 ) - ( _i x. ( _i x. A ) ) ) ) |
| 67 |
53 57
|
oveq12d |
|- ( A e. dom arctan -> ( ( _i x. 1 ) - ( _i x. ( _i x. A ) ) ) = ( _i - -u A ) ) |
| 68 |
|
subneg |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i - -u A ) = ( _i + A ) ) |
| 69 |
5 22 68
|
sylancr |
|- ( A e. dom arctan -> ( _i - -u A ) = ( _i + A ) ) |
| 70 |
67 69
|
eqtrd |
|- ( A e. dom arctan -> ( ( _i x. 1 ) - ( _i x. ( _i x. A ) ) ) = ( _i + A ) ) |
| 71 |
|
addcom |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i + A ) = ( A + _i ) ) |
| 72 |
5 22 71
|
sylancr |
|- ( A e. dom arctan -> ( _i + A ) = ( A + _i ) ) |
| 73 |
66 70 72
|
3eqtrd |
|- ( A e. dom arctan -> ( _i x. ( 1 - ( _i x. A ) ) ) = ( A + _i ) ) |
| 74 |
65 73
|
oveq12d |
|- ( A e. dom arctan -> ( ( _i x. ( 1 + ( _i x. A ) ) ) / ( _i x. ( 1 - ( _i x. A ) ) ) ) = ( ( ( 2 x. _i ) - ( A + _i ) ) / ( A + _i ) ) ) |
| 75 |
|
ine0 |
|- _i =/= 0 |
| 76 |
75
|
a1i |
|- ( A e. dom arctan -> _i =/= 0 ) |
| 77 |
30 26 6 27 76
|
divcan5d |
|- ( A e. dom arctan -> ( ( _i x. ( 1 + ( _i x. A ) ) ) / ( _i x. ( 1 - ( _i x. A ) ) ) ) = ( ( 1 + ( _i x. A ) ) / ( 1 - ( _i x. A ) ) ) ) |
| 78 |
|
addcl |
|- ( ( A e. CC /\ _i e. CC ) -> ( A + _i ) e. CC ) |
| 79 |
22 5 78
|
sylancl |
|- ( A e. dom arctan -> ( A + _i ) e. CC ) |
| 80 |
|
subneg |
|- ( ( A e. CC /\ _i e. CC ) -> ( A - -u _i ) = ( A + _i ) ) |
| 81 |
22 5 80
|
sylancl |
|- ( A e. dom arctan -> ( A - -u _i ) = ( A + _i ) ) |
| 82 |
|
atandm |
|- ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
| 83 |
82
|
simp2bi |
|- ( A e. dom arctan -> A =/= -u _i ) |
| 84 |
|
negicn |
|- -u _i e. CC |
| 85 |
|
subeq0 |
|- ( ( A e. CC /\ -u _i e. CC ) -> ( ( A - -u _i ) = 0 <-> A = -u _i ) ) |
| 86 |
85
|
necon3bid |
|- ( ( A e. CC /\ -u _i e. CC ) -> ( ( A - -u _i ) =/= 0 <-> A =/= -u _i ) ) |
| 87 |
22 84 86
|
sylancl |
|- ( A e. dom arctan -> ( ( A - -u _i ) =/= 0 <-> A =/= -u _i ) ) |
| 88 |
83 87
|
mpbird |
|- ( A e. dom arctan -> ( A - -u _i ) =/= 0 ) |
| 89 |
81 88
|
eqnetrrd |
|- ( A e. dom arctan -> ( A + _i ) =/= 0 ) |
| 90 |
37 79 79 89
|
divsubdird |
|- ( A e. dom arctan -> ( ( ( 2 x. _i ) - ( A + _i ) ) / ( A + _i ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - ( ( A + _i ) / ( A + _i ) ) ) ) |
| 91 |
74 77 90
|
3eqtr3d |
|- ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) / ( 1 - ( _i x. A ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - ( ( A + _i ) / ( A + _i ) ) ) ) |
| 92 |
79 89
|
dividd |
|- ( A e. dom arctan -> ( ( A + _i ) / ( A + _i ) ) = 1 ) |
| 93 |
92
|
oveq2d |
|- ( A e. dom arctan -> ( ( ( 2 x. _i ) / ( A + _i ) ) - ( ( A + _i ) / ( A + _i ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) ) |
| 94 |
50 91 93
|
3eqtrd |
|- ( A e. dom arctan -> ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) ) |
| 95 |
43 45 94
|
3eqtrd |
|- ( A e. dom arctan -> ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) ) |