| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nlim0 |
|- -. Lim (/) |
| 2 |
|
limeq |
|- ( A = (/) -> ( Lim A <-> Lim (/) ) ) |
| 3 |
1 2
|
mtbiri |
|- ( A = (/) -> -. Lim A ) |
| 4 |
3
|
necon2ai |
|- ( Lim A -> A =/= (/) ) |
| 5 |
|
nlim1 |
|- -. Lim 1o |
| 6 |
|
limeq |
|- ( A = 1o -> ( Lim A <-> Lim 1o ) ) |
| 7 |
5 6
|
mtbiri |
|- ( A = 1o -> -. Lim A ) |
| 8 |
7
|
necon2ai |
|- ( Lim A -> A =/= 1o ) |
| 9 |
|
nlim2 |
|- -. Lim 2o |
| 10 |
|
limeq |
|- ( A = 2o -> ( Lim A <-> Lim 2o ) ) |
| 11 |
9 10
|
mtbiri |
|- ( A = 2o -> -. Lim A ) |
| 12 |
11
|
necon2ai |
|- ( Lim A -> A =/= 2o ) |
| 13 |
|
limord |
|- ( Lim A -> Ord A ) |
| 14 |
|
ord2eln012 |
|- ( Ord A -> ( 2o e. A <-> ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) ) ) |
| 15 |
13 14
|
syl |
|- ( Lim A -> ( 2o e. A <-> ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) ) ) |
| 16 |
4 8 12 15
|
mpbir3and |
|- ( Lim A -> 2o e. A ) |