Step |
Hyp |
Ref |
Expression |
1 |
|
fnop |
|- ( ( F Fn A /\ <. x , y >. e. F ) -> x e. A ) |
2 |
|
fnop |
|- ( ( G Fn B /\ <. x , z >. e. G ) -> x e. B ) |
3 |
1 2
|
anim12i |
|- ( ( ( F Fn A /\ <. x , y >. e. F ) /\ ( G Fn B /\ <. x , z >. e. G ) ) -> ( x e. A /\ x e. B ) ) |
4 |
3
|
an4s |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( <. x , y >. e. F /\ <. x , z >. e. G ) ) -> ( x e. A /\ x e. B ) ) |
5 |
|
elin |
|- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
6 |
4 5
|
sylibr |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( <. x , y >. e. F /\ <. x , z >. e. G ) ) -> x e. ( A i^i B ) ) |
7 |
|
vex |
|- y e. _V |
8 |
7
|
opres |
|- ( x e. ( A i^i B ) -> ( <. x , y >. e. ( F |` ( A i^i B ) ) <-> <. x , y >. e. F ) ) |
9 |
|
vex |
|- z e. _V |
10 |
9
|
opres |
|- ( x e. ( A i^i B ) -> ( <. x , z >. e. ( G |` ( A i^i B ) ) <-> <. x , z >. e. G ) ) |
11 |
8 10
|
anbi12d |
|- ( x e. ( A i^i B ) -> ( ( <. x , y >. e. ( F |` ( A i^i B ) ) /\ <. x , z >. e. ( G |` ( A i^i B ) ) ) <-> ( <. x , y >. e. F /\ <. x , z >. e. G ) ) ) |
12 |
11
|
biimprd |
|- ( x e. ( A i^i B ) -> ( ( <. x , y >. e. F /\ <. x , z >. e. G ) -> ( <. x , y >. e. ( F |` ( A i^i B ) ) /\ <. x , z >. e. ( G |` ( A i^i B ) ) ) ) ) |
13 |
6 12
|
syl |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( <. x , y >. e. F /\ <. x , z >. e. G ) ) -> ( ( <. x , y >. e. F /\ <. x , z >. e. G ) -> ( <. x , y >. e. ( F |` ( A i^i B ) ) /\ <. x , z >. e. ( G |` ( A i^i B ) ) ) ) ) |
14 |
13
|
ex |
|- ( ( F Fn A /\ G Fn B ) -> ( ( <. x , y >. e. F /\ <. x , z >. e. G ) -> ( ( <. x , y >. e. F /\ <. x , z >. e. G ) -> ( <. x , y >. e. ( F |` ( A i^i B ) ) /\ <. x , z >. e. ( G |` ( A i^i B ) ) ) ) ) ) |
15 |
14
|
pm2.43d |
|- ( ( F Fn A /\ G Fn B ) -> ( ( <. x , y >. e. F /\ <. x , z >. e. G ) -> ( <. x , y >. e. ( F |` ( A i^i B ) ) /\ <. x , z >. e. ( G |` ( A i^i B ) ) ) ) ) |
16 |
|
resss |
|- ( F |` ( A i^i B ) ) C_ F |
17 |
16
|
sseli |
|- ( <. x , y >. e. ( F |` ( A i^i B ) ) -> <. x , y >. e. F ) |
18 |
|
resss |
|- ( G |` ( A i^i B ) ) C_ G |
19 |
18
|
sseli |
|- ( <. x , z >. e. ( G |` ( A i^i B ) ) -> <. x , z >. e. G ) |
20 |
17 19
|
anim12i |
|- ( ( <. x , y >. e. ( F |` ( A i^i B ) ) /\ <. x , z >. e. ( G |` ( A i^i B ) ) ) -> ( <. x , y >. e. F /\ <. x , z >. e. G ) ) |
21 |
15 20
|
impbid1 |
|- ( ( F Fn A /\ G Fn B ) -> ( ( <. x , y >. e. F /\ <. x , z >. e. G ) <-> ( <. x , y >. e. ( F |` ( A i^i B ) ) /\ <. x , z >. e. ( G |` ( A i^i B ) ) ) ) ) |