Metamath Proof Explorer


Theorem 2eu2ex

Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001)

Ref Expression
Assertion 2eu2ex
|- ( E! x E! y ph -> E. x E. y ph )

Proof

Step Hyp Ref Expression
1 euex
 |-  ( E! x E! y ph -> E. x E! y ph )
2 euex
 |-  ( E! y ph -> E. y ph )
3 2 eximi
 |-  ( E. x E! y ph -> E. x E. y ph )
4 1 3 syl
 |-  ( E! x E! y ph -> E. x E. y ph )