Metamath Proof Explorer


Theorem 2ex

Description: The number 2 is a set. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion 2ex
|- 2 e. _V

Proof

Step Hyp Ref Expression
1 2cn
 |-  2 e. CC
2 1 elexi
 |-  2 e. _V