Metamath Proof Explorer


Theorem 2eximi

Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005)

Ref Expression
Hypothesis eximi.1
|- ( ph -> ps )
Assertion 2eximi
|- ( E. x E. y ph -> E. x E. y ps )

Proof

Step Hyp Ref Expression
1 eximi.1
 |-  ( ph -> ps )
2 1 eximi
 |-  ( E. y ph -> E. y ps )
3 2 eximi
 |-  ( E. x E. y ph -> E. x E. y ps )