| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							oppr | 
							 |-  ( ( a e. _V /\ b e. _V ) -> ( <. a , b >. = <. A , B >. -> { a , b } = { A , B } ) ) | 
						
						
							| 2 | 
							
								1
							 | 
							el2v | 
							 |-  ( <. a , b >. = <. A , B >. -> { a , b } = { A , B } ) | 
						
						
							| 3 | 
							
								2
							 | 
							eqcomd | 
							 |-  ( <. a , b >. = <. A , B >. -> { A , B } = { a , b } ) | 
						
						
							| 4 | 
							
								3
							 | 
							eqcoms | 
							 |-  ( <. A , B >. = <. a , b >. -> { A , B } = { a , b } ) | 
						
						
							| 5 | 
							
								4
							 | 
							anim1i | 
							 |-  ( ( <. A , B >. = <. a , b >. /\ ph ) -> ( { A , B } = { a , b } /\ ph ) ) | 
						
						
							| 6 | 
							
								5
							 | 
							2eximi | 
							 |-  ( E. a E. b ( <. A , B >. = <. a , b >. /\ ph ) -> E. a E. b ( { A , B } = { a , b } /\ ph ) ) |