| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3p2e5 |  |-  ( 3 + 2 ) = 5 | 
						
							| 2 | 1 | eqcomi |  |-  5 = ( 3 + 2 ) | 
						
							| 3 | 2 | oveq2i |  |-  ( 2 ^ 5 ) = ( 2 ^ ( 3 + 2 ) ) | 
						
							| 4 |  | 2cn |  |-  2 e. CC | 
						
							| 5 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 6 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 7 |  | expadd |  |-  ( ( 2 e. CC /\ 3 e. NN0 /\ 2 e. NN0 ) -> ( 2 ^ ( 3 + 2 ) ) = ( ( 2 ^ 3 ) x. ( 2 ^ 2 ) ) ) | 
						
							| 8 | 4 5 6 7 | mp3an |  |-  ( 2 ^ ( 3 + 2 ) ) = ( ( 2 ^ 3 ) x. ( 2 ^ 2 ) ) | 
						
							| 9 |  | cu2 |  |-  ( 2 ^ 3 ) = 8 | 
						
							| 10 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 11 | 9 10 | oveq12i |  |-  ( ( 2 ^ 3 ) x. ( 2 ^ 2 ) ) = ( 8 x. 4 ) | 
						
							| 12 | 8 11 | eqtri |  |-  ( 2 ^ ( 3 + 2 ) ) = ( 8 x. 4 ) | 
						
							| 13 | 3 12 | eqtri |  |-  ( 2 ^ 5 ) = ( 8 x. 4 ) | 
						
							| 14 |  | 8t4e32 |  |-  ( 8 x. 4 ) = ; 3 2 | 
						
							| 15 | 13 14 | eqtri |  |-  ( 2 ^ 5 ) = ; 3 2 |