Metamath Proof Explorer


Theorem 2exp6

Description: Two to the sixth power is 64. (Contributed by Mario Carneiro, 20-Apr-2015) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Assertion 2exp6
|- ( 2 ^ 6 ) = ; 6 4

Proof

Step Hyp Ref Expression
1 2nn0
 |-  2 e. NN0
2 3nn0
 |-  3 e. NN0
3 3cn
 |-  3 e. CC
4 2cn
 |-  2 e. CC
5 3t2e6
 |-  ( 3 x. 2 ) = 6
6 3 4 5 mulcomli
 |-  ( 2 x. 3 ) = 6
7 cu2
 |-  ( 2 ^ 3 ) = 8
8 8t8e64
 |-  ( 8 x. 8 ) = ; 6 4
9 1 2 6 7 8 numexp2x
 |-  ( 2 ^ 6 ) = ; 6 4