| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-7 |  |-  7 = ( 6 + 1 ) | 
						
							| 2 | 1 | oveq2i |  |-  ( 2 ^ 7 ) = ( 2 ^ ( 6 + 1 ) ) | 
						
							| 3 |  | 2cn |  |-  2 e. CC | 
						
							| 4 |  | 6nn0 |  |-  6 e. NN0 | 
						
							| 5 |  | expp1 |  |-  ( ( 2 e. CC /\ 6 e. NN0 ) -> ( 2 ^ ( 6 + 1 ) ) = ( ( 2 ^ 6 ) x. 2 ) ) | 
						
							| 6 | 3 4 5 | mp2an |  |-  ( 2 ^ ( 6 + 1 ) ) = ( ( 2 ^ 6 ) x. 2 ) | 
						
							| 7 |  | 2exp6 |  |-  ( 2 ^ 6 ) = ; 6 4 | 
						
							| 8 | 7 | oveq1i |  |-  ( ( 2 ^ 6 ) x. 2 ) = ( ; 6 4 x. 2 ) | 
						
							| 9 | 6 8 | eqtri |  |-  ( 2 ^ ( 6 + 1 ) ) = ( ; 6 4 x. 2 ) | 
						
							| 10 | 2 9 | eqtri |  |-  ( 2 ^ 7 ) = ( ; 6 4 x. 2 ) | 
						
							| 11 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 12 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 13 |  | eqid |  |-  ; 6 4 = ; 6 4 | 
						
							| 14 |  | 6t2e12 |  |-  ( 6 x. 2 ) = ; 1 2 | 
						
							| 15 |  | 4t2e8 |  |-  ( 4 x. 2 ) = 8 | 
						
							| 16 | 11 4 12 13 14 15 | decmul1 |  |-  ( ; 6 4 x. 2 ) = ; ; 1 2 8 | 
						
							| 17 | 10 16 | eqtri |  |-  ( 2 ^ 7 ) = ; ; 1 2 8 |