Step |
Hyp |
Ref |
Expression |
1 |
|
df-7 |
|- 7 = ( 6 + 1 ) |
2 |
1
|
oveq2i |
|- ( 2 ^ 7 ) = ( 2 ^ ( 6 + 1 ) ) |
3 |
|
2cn |
|- 2 e. CC |
4 |
|
6nn0 |
|- 6 e. NN0 |
5 |
|
expp1 |
|- ( ( 2 e. CC /\ 6 e. NN0 ) -> ( 2 ^ ( 6 + 1 ) ) = ( ( 2 ^ 6 ) x. 2 ) ) |
6 |
3 4 5
|
mp2an |
|- ( 2 ^ ( 6 + 1 ) ) = ( ( 2 ^ 6 ) x. 2 ) |
7 |
|
2exp6 |
|- ( 2 ^ 6 ) = ; 6 4 |
8 |
7
|
oveq1i |
|- ( ( 2 ^ 6 ) x. 2 ) = ( ; 6 4 x. 2 ) |
9 |
6 8
|
eqtri |
|- ( 2 ^ ( 6 + 1 ) ) = ( ; 6 4 x. 2 ) |
10 |
2 9
|
eqtri |
|- ( 2 ^ 7 ) = ( ; 6 4 x. 2 ) |
11 |
|
2nn0 |
|- 2 e. NN0 |
12 |
|
4nn0 |
|- 4 e. NN0 |
13 |
|
eqid |
|- ; 6 4 = ; 6 4 |
14 |
|
6t2e12 |
|- ( 6 x. 2 ) = ; 1 2 |
15 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
16 |
11 4 12 13 14 15
|
decmul1 |
|- ( ; 6 4 x. 2 ) = ; ; 1 2 8 |
17 |
10 16
|
eqtri |
|- ( 2 ^ 7 ) = ; ; 1 2 8 |