Metamath Proof Explorer


Theorem 2exp8

Description: Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 2exp8
|- ( 2 ^ 8 ) = ; ; 2 5 6

Proof

Step Hyp Ref Expression
1 2nn0
 |-  2 e. NN0
2 4nn0
 |-  4 e. NN0
3 2 nn0cni
 |-  4 e. CC
4 2cn
 |-  2 e. CC
5 4t2e8
 |-  ( 4 x. 2 ) = 8
6 3 4 5 mulcomli
 |-  ( 2 x. 4 ) = 8
7 2exp4
 |-  ( 2 ^ 4 ) = ; 1 6
8 1nn0
 |-  1 e. NN0
9 6nn0
 |-  6 e. NN0
10 8 9 deccl
 |-  ; 1 6 e. NN0
11 eqid
 |-  ; 1 6 = ; 1 6
12 9nn0
 |-  9 e. NN0
13 10 nn0cni
 |-  ; 1 6 e. CC
14 13 mulid1i
 |-  ( ; 1 6 x. 1 ) = ; 1 6
15 1p1e2
 |-  ( 1 + 1 ) = 2
16 5nn0
 |-  5 e. NN0
17 9cn
 |-  9 e. CC
18 6cn
 |-  6 e. CC
19 9p6e15
 |-  ( 9 + 6 ) = ; 1 5
20 17 18 19 addcomli
 |-  ( 6 + 9 ) = ; 1 5
21 8 9 12 14 15 16 20 decaddci
 |-  ( ( ; 1 6 x. 1 ) + 9 ) = ; 2 5
22 3nn0
 |-  3 e. NN0
23 18 mulid2i
 |-  ( 1 x. 6 ) = 6
24 23 oveq1i
 |-  ( ( 1 x. 6 ) + 3 ) = ( 6 + 3 )
25 6p3e9
 |-  ( 6 + 3 ) = 9
26 24 25 eqtri
 |-  ( ( 1 x. 6 ) + 3 ) = 9
27 6t6e36
 |-  ( 6 x. 6 ) = ; 3 6
28 9 8 9 11 9 22 26 27 decmul1c
 |-  ( ; 1 6 x. 6 ) = ; 9 6
29 10 8 9 11 9 12 21 28 decmul2c
 |-  ( ; 1 6 x. ; 1 6 ) = ; ; 2 5 6
30 1 2 6 7 29 numexp2x
 |-  ( 2 ^ 8 ) = ; ; 2 5 6