Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = 4 -> ( 2 ^ x ) = ( 2 ^ 4 ) ) |
2 |
|
2exp4 |
|- ( 2 ^ 4 ) = ; 1 6 |
3 |
1 2
|
eqtrdi |
|- ( x = 4 -> ( 2 ^ x ) = ; 1 6 ) |
4 |
|
fveq2 |
|- ( x = 4 -> ( ! ` x ) = ( ! ` 4 ) ) |
5 |
|
fac4 |
|- ( ! ` 4 ) = ; 2 4 |
6 |
4 5
|
eqtrdi |
|- ( x = 4 -> ( ! ` x ) = ; 2 4 ) |
7 |
3 6
|
breq12d |
|- ( x = 4 -> ( ( 2 ^ x ) < ( ! ` x ) <-> ; 1 6 < ; 2 4 ) ) |
8 |
|
oveq2 |
|- ( x = n -> ( 2 ^ x ) = ( 2 ^ n ) ) |
9 |
|
fveq2 |
|- ( x = n -> ( ! ` x ) = ( ! ` n ) ) |
10 |
8 9
|
breq12d |
|- ( x = n -> ( ( 2 ^ x ) < ( ! ` x ) <-> ( 2 ^ n ) < ( ! ` n ) ) ) |
11 |
|
oveq2 |
|- ( x = ( n + 1 ) -> ( 2 ^ x ) = ( 2 ^ ( n + 1 ) ) ) |
12 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( ! ` x ) = ( ! ` ( n + 1 ) ) ) |
13 |
11 12
|
breq12d |
|- ( x = ( n + 1 ) -> ( ( 2 ^ x ) < ( ! ` x ) <-> ( 2 ^ ( n + 1 ) ) < ( ! ` ( n + 1 ) ) ) ) |
14 |
|
oveq2 |
|- ( x = N -> ( 2 ^ x ) = ( 2 ^ N ) ) |
15 |
|
fveq2 |
|- ( x = N -> ( ! ` x ) = ( ! ` N ) ) |
16 |
14 15
|
breq12d |
|- ( x = N -> ( ( 2 ^ x ) < ( ! ` x ) <-> ( 2 ^ N ) < ( ! ` N ) ) ) |
17 |
|
1nn0 |
|- 1 e. NN0 |
18 |
|
2nn0 |
|- 2 e. NN0 |
19 |
|
6nn0 |
|- 6 e. NN0 |
20 |
|
4nn0 |
|- 4 e. NN0 |
21 |
|
6lt10 |
|- 6 < ; 1 0 |
22 |
|
1lt2 |
|- 1 < 2 |
23 |
17 18 19 20 21 22
|
decltc |
|- ; 1 6 < ; 2 4 |
24 |
|
2nn |
|- 2 e. NN |
25 |
24
|
a1i |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 2 e. NN ) |
26 |
|
4nn |
|- 4 e. NN |
27 |
|
simpl |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> n e. ( ZZ>= ` 4 ) ) |
28 |
|
eluznn |
|- ( ( 4 e. NN /\ n e. ( ZZ>= ` 4 ) ) -> n e. NN ) |
29 |
26 27 28
|
sylancr |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> n e. NN ) |
30 |
29
|
nnnn0d |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> n e. NN0 ) |
31 |
25 30
|
nnexpcld |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( 2 ^ n ) e. NN ) |
32 |
31
|
nnred |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( 2 ^ n ) e. RR ) |
33 |
|
2re |
|- 2 e. RR |
34 |
33
|
a1i |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 2 e. RR ) |
35 |
32 34
|
remulcld |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ( 2 ^ n ) x. 2 ) e. RR ) |
36 |
30
|
faccld |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ! ` n ) e. NN ) |
37 |
36
|
nnred |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ! ` n ) e. RR ) |
38 |
37 34
|
remulcld |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ( ! ` n ) x. 2 ) e. RR ) |
39 |
29
|
nnred |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> n e. RR ) |
40 |
|
1red |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 1 e. RR ) |
41 |
39 40
|
readdcld |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( n + 1 ) e. RR ) |
42 |
37 41
|
remulcld |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ( ! ` n ) x. ( n + 1 ) ) e. RR ) |
43 |
|
2rp |
|- 2 e. RR+ |
44 |
43
|
a1i |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 2 e. RR+ ) |
45 |
|
simpr |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( 2 ^ n ) < ( ! ` n ) ) |
46 |
32 37 44 45
|
ltmul1dd |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ( 2 ^ n ) x. 2 ) < ( ( ! ` n ) x. 2 ) ) |
47 |
36
|
nnnn0d |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ! ` n ) e. NN0 ) |
48 |
47
|
nn0ge0d |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 0 <_ ( ! ` n ) ) |
49 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
50 |
29
|
nnge1d |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 1 <_ n ) |
51 |
40 39 40 50
|
leadd1dd |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( 1 + 1 ) <_ ( n + 1 ) ) |
52 |
49 51
|
eqbrtrid |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 2 <_ ( n + 1 ) ) |
53 |
34 41 37 48 52
|
lemul2ad |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ( ! ` n ) x. 2 ) <_ ( ( ! ` n ) x. ( n + 1 ) ) ) |
54 |
35 38 42 46 53
|
ltletrd |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ( 2 ^ n ) x. 2 ) < ( ( ! ` n ) x. ( n + 1 ) ) ) |
55 |
|
2cnd |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 2 e. CC ) |
56 |
55 30
|
expp1d |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( 2 ^ ( n + 1 ) ) = ( ( 2 ^ n ) x. 2 ) ) |
57 |
|
facp1 |
|- ( n e. NN0 -> ( ! ` ( n + 1 ) ) = ( ( ! ` n ) x. ( n + 1 ) ) ) |
58 |
30 57
|
syl |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ! ` ( n + 1 ) ) = ( ( ! ` n ) x. ( n + 1 ) ) ) |
59 |
54 56 58
|
3brtr4d |
|- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( 2 ^ ( n + 1 ) ) < ( ! ` ( n + 1 ) ) ) |
60 |
59
|
ex |
|- ( n e. ( ZZ>= ` 4 ) -> ( ( 2 ^ n ) < ( ! ` n ) -> ( 2 ^ ( n + 1 ) ) < ( ! ` ( n + 1 ) ) ) ) |
61 |
7 10 13 16 23 60
|
uzind4i |
|- ( N e. ( ZZ>= ` 4 ) -> ( 2 ^ N ) < ( ! ` N ) ) |