Metamath Proof Explorer


Theorem 2exsb

Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005) (Proof shortened by Wolf Lammen, 30-Sep-2018)

Ref Expression
Assertion 2exsb
|- ( E. x E. y ph <-> E. z E. w A. x A. y ( ( x = z /\ y = w ) -> ph ) )

Proof

Step Hyp Ref Expression
1 nfv
 |-  F/ w ph
2 nfv
 |-  F/ z ph
3 1 2 2sb8ev
 |-  ( E. x E. y ph <-> E. z E. w [ z / x ] [ w / y ] ph )
4 2sb6
 |-  ( [ z / x ] [ w / y ] ph <-> A. x A. y ( ( x = z /\ y = w ) -> ph ) )
5 4 2exbii
 |-  ( E. z E. w [ z / x ] [ w / y ] ph <-> E. z E. w A. x A. y ( ( x = z /\ y = w ) -> ph ) )
6 3 5 bitri
 |-  ( E. x E. y ph <-> E. z E. w A. x A. y ( ( x = z /\ y = w ) -> ph ) )