Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005) (Proof shortened by Wolf Lammen, 30-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2exsb | |- ( E. x E. y ph <-> E. z E. w A. x A. y ( ( x = z /\ y = w ) -> ph ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv | |- F/ w ph | |
| 2 | nfv | |- F/ z ph | |
| 3 | 1 2 | 2sb8ef | |- ( E. x E. y ph <-> E. z E. w [ z / x ] [ w / y ] ph ) | 
| 4 | 2sb6 | |- ( [ z / x ] [ w / y ] ph <-> A. x A. y ( ( x = z /\ y = w ) -> ph ) ) | |
| 5 | 4 | 2exbii | |- ( E. z E. w [ z / x ] [ w / y ] ph <-> E. z E. w A. x A. y ( ( x = z /\ y = w ) -> ph ) ) | 
| 6 | 3 5 | bitri | |- ( E. x E. y ph <-> E. z E. w A. x A. y ( ( x = z /\ y = w ) -> ph ) ) |