Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005) (Proof shortened by Wolf Lammen, 30-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | 2exsb | |- ( E. x E. y ph <-> E. z E. w A. x A. y ( ( x = z /\ y = w ) -> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | |- F/ w ph |
|
2 | nfv | |- F/ z ph |
|
3 | 1 2 | 2sb8ev | |- ( E. x E. y ph <-> E. z E. w [ z / x ] [ w / y ] ph ) |
4 | 2sb6 | |- ( [ z / x ] [ w / y ] ph <-> A. x A. y ( ( x = z /\ y = w ) -> ph ) ) |
|
5 | 4 | 2exbii | |- ( E. z E. w [ z / x ] [ w / y ] ph <-> E. z E. w A. x A. y ( ( x = z /\ y = w ) -> ph ) ) |
6 | 3 5 | bitri | |- ( E. x E. y ph <-> E. z E. w A. x A. y ( ( x = z /\ y = w ) -> ph ) ) |