Step |
Hyp |
Ref |
Expression |
1 |
|
f1veqaeq |
|- ( ( F : C -1-1-> D /\ ( A e. C /\ B e. C ) ) -> ( ( F ` A ) = ( F ` B ) -> A = B ) ) |
2 |
1
|
adantll |
|- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) ) -> ( ( F ` A ) = ( F ` B ) -> A = B ) ) |
3 |
2
|
necon3ad |
|- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) ) -> ( A =/= B -> -. ( F ` A ) = ( F ` B ) ) ) |
4 |
3
|
3impia |
|- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) /\ A =/= B ) -> -. ( F ` A ) = ( F ` B ) ) |
5 |
|
simpll |
|- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) ) -> E : D -1-1-> R ) |
6 |
|
f1f |
|- ( F : C -1-1-> D -> F : C --> D ) |
7 |
|
ffvelrn |
|- ( ( F : C --> D /\ A e. C ) -> ( F ` A ) e. D ) |
8 |
|
ffvelrn |
|- ( ( F : C --> D /\ B e. C ) -> ( F ` B ) e. D ) |
9 |
7 8
|
anim12dan |
|- ( ( F : C --> D /\ ( A e. C /\ B e. C ) ) -> ( ( F ` A ) e. D /\ ( F ` B ) e. D ) ) |
10 |
9
|
ex |
|- ( F : C --> D -> ( ( A e. C /\ B e. C ) -> ( ( F ` A ) e. D /\ ( F ` B ) e. D ) ) ) |
11 |
6 10
|
syl |
|- ( F : C -1-1-> D -> ( ( A e. C /\ B e. C ) -> ( ( F ` A ) e. D /\ ( F ` B ) e. D ) ) ) |
12 |
11
|
adantl |
|- ( ( E : D -1-1-> R /\ F : C -1-1-> D ) -> ( ( A e. C /\ B e. C ) -> ( ( F ` A ) e. D /\ ( F ` B ) e. D ) ) ) |
13 |
12
|
imp |
|- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) ) -> ( ( F ` A ) e. D /\ ( F ` B ) e. D ) ) |
14 |
|
f1veqaeq |
|- ( ( E : D -1-1-> R /\ ( ( F ` A ) e. D /\ ( F ` B ) e. D ) ) -> ( ( E ` ( F ` A ) ) = ( E ` ( F ` B ) ) -> ( F ` A ) = ( F ` B ) ) ) |
15 |
5 13 14
|
syl2anc |
|- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) ) -> ( ( E ` ( F ` A ) ) = ( E ` ( F ` B ) ) -> ( F ` A ) = ( F ` B ) ) ) |
16 |
15
|
con3dimp |
|- ( ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) ) /\ -. ( F ` A ) = ( F ` B ) ) -> -. ( E ` ( F ` A ) ) = ( E ` ( F ` B ) ) ) |
17 |
|
eqeq12 |
|- ( ( ( E ` ( F ` A ) ) = X /\ ( E ` ( F ` B ) ) = Y ) -> ( ( E ` ( F ` A ) ) = ( E ` ( F ` B ) ) <-> X = Y ) ) |
18 |
17
|
notbid |
|- ( ( ( E ` ( F ` A ) ) = X /\ ( E ` ( F ` B ) ) = Y ) -> ( -. ( E ` ( F ` A ) ) = ( E ` ( F ` B ) ) <-> -. X = Y ) ) |
19 |
|
neqne |
|- ( -. X = Y -> X =/= Y ) |
20 |
18 19
|
syl6bi |
|- ( ( ( E ` ( F ` A ) ) = X /\ ( E ` ( F ` B ) ) = Y ) -> ( -. ( E ` ( F ` A ) ) = ( E ` ( F ` B ) ) -> X =/= Y ) ) |
21 |
16 20
|
syl5com |
|- ( ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) ) /\ -. ( F ` A ) = ( F ` B ) ) -> ( ( ( E ` ( F ` A ) ) = X /\ ( E ` ( F ` B ) ) = Y ) -> X =/= Y ) ) |
22 |
21
|
ex |
|- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) ) -> ( -. ( F ` A ) = ( F ` B ) -> ( ( ( E ` ( F ` A ) ) = X /\ ( E ` ( F ` B ) ) = Y ) -> X =/= Y ) ) ) |
23 |
22
|
3adant3 |
|- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) /\ A =/= B ) -> ( -. ( F ` A ) = ( F ` B ) -> ( ( ( E ` ( F ` A ) ) = X /\ ( E ` ( F ` B ) ) = Y ) -> X =/= Y ) ) ) |
24 |
4 23
|
mpd |
|- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) /\ A =/= B ) -> ( ( ( E ` ( F ` A ) ) = X /\ ( E ` ( F ` B ) ) = Y ) -> X =/= Y ) ) |