Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005) (Proof shortened by Wolf Lammen, 19-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2false.1 | |- -. ph |
|
2false.2 | |- -. ps |
||
Assertion | 2false | |- ( ph <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2false.1 | |- -. ph |
|
2 | 2false.2 | |- -. ps |
|
3 | 1 2 | 2th | |- ( -. ph <-> -. ps ) |
4 | 3 | con4bii | |- ( ph <-> ps ) |