Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013) (Proof shortened by Wolf Lammen, 11-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2falsed.1 | |- ( ph -> -. ps ) |
|
2falsed.2 | |- ( ph -> -. ch ) |
||
Assertion | 2falsed | |- ( ph -> ( ps <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2falsed.1 | |- ( ph -> -. ps ) |
|
2 | 2falsed.2 | |- ( ph -> -. ch ) |
|
3 | 1 2 | 2thd | |- ( ph -> ( -. ps <-> -. ch ) ) |
4 | 3 | con4bid | |- ( ph -> ( ps <-> ch ) ) |