| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffn |  |-  ( F : ( 0 ... M ) --> X -> F Fn ( 0 ... M ) ) | 
						
							| 2 |  | ffn |  |-  ( P : ( 0 ... N ) --> Y -> P Fn ( 0 ... N ) ) | 
						
							| 3 | 1 2 | anim12i |  |-  ( ( F : ( 0 ... M ) --> X /\ P : ( 0 ... N ) --> Y ) -> ( F Fn ( 0 ... M ) /\ P Fn ( 0 ... N ) ) ) | 
						
							| 4 | 3 | 3adant1 |  |-  ( ( M e. NN0 /\ F : ( 0 ... M ) --> X /\ P : ( 0 ... N ) --> Y ) -> ( F Fn ( 0 ... M ) /\ P Fn ( 0 ... N ) ) ) | 
						
							| 5 |  | eqfnfv2 |  |-  ( ( F Fn ( 0 ... M ) /\ P Fn ( 0 ... N ) ) -> ( F = P <-> ( ( 0 ... M ) = ( 0 ... N ) /\ A. i e. ( 0 ... M ) ( F ` i ) = ( P ` i ) ) ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( M e. NN0 /\ F : ( 0 ... M ) --> X /\ P : ( 0 ... N ) --> Y ) -> ( F = P <-> ( ( 0 ... M ) = ( 0 ... N ) /\ A. i e. ( 0 ... M ) ( F ` i ) = ( P ` i ) ) ) ) | 
						
							| 7 |  | elnn0uz |  |-  ( M e. NN0 <-> M e. ( ZZ>= ` 0 ) ) | 
						
							| 8 |  | fzopth |  |-  ( M e. ( ZZ>= ` 0 ) -> ( ( 0 ... M ) = ( 0 ... N ) <-> ( 0 = 0 /\ M = N ) ) ) | 
						
							| 9 | 7 8 | sylbi |  |-  ( M e. NN0 -> ( ( 0 ... M ) = ( 0 ... N ) <-> ( 0 = 0 /\ M = N ) ) ) | 
						
							| 10 |  | simpr |  |-  ( ( 0 = 0 /\ M = N ) -> M = N ) | 
						
							| 11 | 9 10 | biimtrdi |  |-  ( M e. NN0 -> ( ( 0 ... M ) = ( 0 ... N ) -> M = N ) ) | 
						
							| 12 | 11 | anim1d |  |-  ( M e. NN0 -> ( ( ( 0 ... M ) = ( 0 ... N ) /\ A. i e. ( 0 ... M ) ( F ` i ) = ( P ` i ) ) -> ( M = N /\ A. i e. ( 0 ... M ) ( F ` i ) = ( P ` i ) ) ) ) | 
						
							| 13 |  | oveq2 |  |-  ( M = N -> ( 0 ... M ) = ( 0 ... N ) ) | 
						
							| 14 | 13 | anim1i |  |-  ( ( M = N /\ A. i e. ( 0 ... M ) ( F ` i ) = ( P ` i ) ) -> ( ( 0 ... M ) = ( 0 ... N ) /\ A. i e. ( 0 ... M ) ( F ` i ) = ( P ` i ) ) ) | 
						
							| 15 | 12 14 | impbid1 |  |-  ( M e. NN0 -> ( ( ( 0 ... M ) = ( 0 ... N ) /\ A. i e. ( 0 ... M ) ( F ` i ) = ( P ` i ) ) <-> ( M = N /\ A. i e. ( 0 ... M ) ( F ` i ) = ( P ` i ) ) ) ) | 
						
							| 16 | 15 | 3ad2ant1 |  |-  ( ( M e. NN0 /\ F : ( 0 ... M ) --> X /\ P : ( 0 ... N ) --> Y ) -> ( ( ( 0 ... M ) = ( 0 ... N ) /\ A. i e. ( 0 ... M ) ( F ` i ) = ( P ` i ) ) <-> ( M = N /\ A. i e. ( 0 ... M ) ( F ` i ) = ( P ` i ) ) ) ) | 
						
							| 17 | 6 16 | bitrd |  |-  ( ( M e. NN0 /\ F : ( 0 ... M ) --> X /\ P : ( 0 ... N ) --> Y ) -> ( F = P <-> ( M = N /\ A. i e. ( 0 ... M ) ( F ` i ) = ( P ` i ) ) ) ) |