Step |
Hyp |
Ref |
Expression |
1 |
|
2fvcoidd.f |
|- ( ph -> F : A --> B ) |
2 |
|
2fvcoidd.g |
|- ( ph -> G : B --> A ) |
3 |
|
2fvcoidd.i |
|- ( ph -> A. a e. A ( G ` ( F ` a ) ) = a ) |
4 |
|
fcompt |
|- ( ( G : B --> A /\ F : A --> B ) -> ( G o. F ) = ( x e. A |-> ( G ` ( F ` x ) ) ) ) |
5 |
2 1 4
|
syl2anc |
|- ( ph -> ( G o. F ) = ( x e. A |-> ( G ` ( F ` x ) ) ) ) |
6 |
|
2fveq3 |
|- ( a = x -> ( G ` ( F ` a ) ) = ( G ` ( F ` x ) ) ) |
7 |
|
id |
|- ( a = x -> a = x ) |
8 |
6 7
|
eqeq12d |
|- ( a = x -> ( ( G ` ( F ` a ) ) = a <-> ( G ` ( F ` x ) ) = x ) ) |
9 |
8
|
rspccv |
|- ( A. a e. A ( G ` ( F ` a ) ) = a -> ( x e. A -> ( G ` ( F ` x ) ) = x ) ) |
10 |
3 9
|
syl |
|- ( ph -> ( x e. A -> ( G ` ( F ` x ) ) = x ) ) |
11 |
10
|
imp |
|- ( ( ph /\ x e. A ) -> ( G ` ( F ` x ) ) = x ) |
12 |
11
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( G ` ( F ` x ) ) ) = ( x e. A |-> x ) ) |
13 |
|
mptresid |
|- ( _I |` A ) = ( x e. A |-> x ) |
14 |
12 13
|
eqtr4di |
|- ( ph -> ( x e. A |-> ( G ` ( F ` x ) ) ) = ( _I |` A ) ) |
15 |
5 14
|
eqtrd |
|- ( ph -> ( G o. F ) = ( _I |` A ) ) |