| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2fvcoidd.f |  |-  ( ph -> F : A --> B ) | 
						
							| 2 |  | 2fvcoidd.g |  |-  ( ph -> G : B --> A ) | 
						
							| 3 |  | 2fvcoidd.i |  |-  ( ph -> A. a e. A ( G ` ( F ` a ) ) = a ) | 
						
							| 4 |  | fcompt |  |-  ( ( G : B --> A /\ F : A --> B ) -> ( G o. F ) = ( x e. A |-> ( G ` ( F ` x ) ) ) ) | 
						
							| 5 | 2 1 4 | syl2anc |  |-  ( ph -> ( G o. F ) = ( x e. A |-> ( G ` ( F ` x ) ) ) ) | 
						
							| 6 |  | 2fveq3 |  |-  ( a = x -> ( G ` ( F ` a ) ) = ( G ` ( F ` x ) ) ) | 
						
							| 7 |  | id |  |-  ( a = x -> a = x ) | 
						
							| 8 | 6 7 | eqeq12d |  |-  ( a = x -> ( ( G ` ( F ` a ) ) = a <-> ( G ` ( F ` x ) ) = x ) ) | 
						
							| 9 | 8 | rspccv |  |-  ( A. a e. A ( G ` ( F ` a ) ) = a -> ( x e. A -> ( G ` ( F ` x ) ) = x ) ) | 
						
							| 10 | 3 9 | syl |  |-  ( ph -> ( x e. A -> ( G ` ( F ` x ) ) = x ) ) | 
						
							| 11 | 10 | imp |  |-  ( ( ph /\ x e. A ) -> ( G ` ( F ` x ) ) = x ) | 
						
							| 12 | 11 | mpteq2dva |  |-  ( ph -> ( x e. A |-> ( G ` ( F ` x ) ) ) = ( x e. A |-> x ) ) | 
						
							| 13 |  | mptresid |  |-  ( _I |` A ) = ( x e. A |-> x ) | 
						
							| 14 | 12 13 | eqtr4di |  |-  ( ph -> ( x e. A |-> ( G ` ( F ` x ) ) ) = ( _I |` A ) ) | 
						
							| 15 | 5 14 | eqtrd |  |-  ( ph -> ( G o. F ) = ( _I |` A ) ) |