Description: A function is bijective if it has an inverse function. (Contributed by AV, 15-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2fvcoidd.f | |- ( ph -> F : A --> B ) |
|
2fvcoidd.g | |- ( ph -> G : B --> A ) |
||
2fvcoidd.i | |- ( ph -> A. a e. A ( G ` ( F ` a ) ) = a ) |
||
2fvidf1od.i | |- ( ph -> A. b e. B ( F ` ( G ` b ) ) = b ) |
||
Assertion | 2fvidf1od | |- ( ph -> F : A -1-1-onto-> B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fvcoidd.f | |- ( ph -> F : A --> B ) |
|
2 | 2fvcoidd.g | |- ( ph -> G : B --> A ) |
|
3 | 2fvcoidd.i | |- ( ph -> A. a e. A ( G ` ( F ` a ) ) = a ) |
|
4 | 2fvidf1od.i | |- ( ph -> A. b e. B ( F ` ( G ` b ) ) = b ) |
|
5 | 1 2 3 | 2fvcoidd | |- ( ph -> ( G o. F ) = ( _I |` A ) ) |
6 | 2 1 4 | 2fvcoidd | |- ( ph -> ( F o. G ) = ( _I |` B ) ) |
7 | 1 2 5 6 | fcof1od | |- ( ph -> F : A -1-1-onto-> B ) |