Step |
Hyp |
Ref |
Expression |
1 |
|
2gencl.1 |
|- ( C e. S <-> E. x e. R A = C ) |
2 |
|
2gencl.2 |
|- ( D e. S <-> E. y e. R B = D ) |
3 |
|
2gencl.3 |
|- ( A = C -> ( ph <-> ps ) ) |
4 |
|
2gencl.4 |
|- ( B = D -> ( ps <-> ch ) ) |
5 |
|
2gencl.5 |
|- ( ( x e. R /\ y e. R ) -> ph ) |
6 |
|
df-rex |
|- ( E. y e. R B = D <-> E. y ( y e. R /\ B = D ) ) |
7 |
2 6
|
bitri |
|- ( D e. S <-> E. y ( y e. R /\ B = D ) ) |
8 |
4
|
imbi2d |
|- ( B = D -> ( ( C e. S -> ps ) <-> ( C e. S -> ch ) ) ) |
9 |
|
df-rex |
|- ( E. x e. R A = C <-> E. x ( x e. R /\ A = C ) ) |
10 |
1 9
|
bitri |
|- ( C e. S <-> E. x ( x e. R /\ A = C ) ) |
11 |
3
|
imbi2d |
|- ( A = C -> ( ( y e. R -> ph ) <-> ( y e. R -> ps ) ) ) |
12 |
5
|
ex |
|- ( x e. R -> ( y e. R -> ph ) ) |
13 |
10 11 12
|
gencl |
|- ( C e. S -> ( y e. R -> ps ) ) |
14 |
13
|
com12 |
|- ( y e. R -> ( C e. S -> ps ) ) |
15 |
7 8 14
|
gencl |
|- ( D e. S -> ( C e. S -> ch ) ) |
16 |
15
|
impcom |
|- ( ( C e. S /\ D e. S ) -> ch ) |