Metamath Proof Explorer


Theorem 2halvesd

Description: Two halves make a whole. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis 2timesd.1
|- ( ph -> A e. CC )
Assertion 2halvesd
|- ( ph -> ( ( A / 2 ) + ( A / 2 ) ) = A )

Proof

Step Hyp Ref Expression
1 2timesd.1
 |-  ( ph -> A e. CC )
2 2halves
 |-  ( A e. CC -> ( ( A / 2 ) + ( A / 2 ) ) = A )
3 1 2 syl
 |-  ( ph -> ( ( A / 2 ) + ( A / 2 ) ) = A )