Step |
Hyp |
Ref |
Expression |
1 |
|
2idlcpblrng.x |
|- X = ( Base ` R ) |
2 |
|
2idlcpblrng.r |
|- E = ( R ~QG S ) |
3 |
|
2idlcpblrng.i |
|- I = ( 2Ideal ` R ) |
4 |
|
2idlcpblrng.t |
|- .x. = ( .r ` R ) |
5 |
|
ringrng |
|- ( R e. Ring -> R e. Rng ) |
6 |
5
|
adantr |
|- ( ( R e. Ring /\ S e. I ) -> R e. Rng ) |
7 |
|
simpr |
|- ( ( R e. Ring /\ S e. I ) -> S e. I ) |
8 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
9 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
10 |
|
eqid |
|- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
11 |
8 9 10 3
|
2idlelb |
|- ( S e. I <-> ( S e. ( LIdeal ` R ) /\ S e. ( LIdeal ` ( oppR ` R ) ) ) ) |
12 |
11
|
simplbi |
|- ( S e. I -> S e. ( LIdeal ` R ) ) |
13 |
8
|
lidlsubg |
|- ( ( R e. Ring /\ S e. ( LIdeal ` R ) ) -> S e. ( SubGrp ` R ) ) |
14 |
12 13
|
sylan2 |
|- ( ( R e. Ring /\ S e. I ) -> S e. ( SubGrp ` R ) ) |
15 |
1 2 3 4
|
2idlcpblrng |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( ( A E C /\ B E D ) -> ( A .x. B ) E ( C .x. D ) ) ) |
16 |
6 7 14 15
|
syl3anc |
|- ( ( R e. Ring /\ S e. I ) -> ( ( A E C /\ B E D ) -> ( A .x. B ) E ( C .x. D ) ) ) |