Step |
Hyp |
Ref |
Expression |
1 |
|
2idlcpbl.x |
|- X = ( Base ` R ) |
2 |
|
2idlcpbl.r |
|- E = ( R ~QG S ) |
3 |
|
2idlcpbl.i |
|- I = ( 2Ideal ` R ) |
4 |
|
2idlcpbl.t |
|- .x. = ( .r ` R ) |
5 |
|
simpll |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> R e. Ring ) |
6 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
7 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
8 |
|
eqid |
|- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
9 |
6 7 8 3
|
2idlelb |
|- ( S e. I <-> ( S e. ( LIdeal ` R ) /\ S e. ( LIdeal ` ( oppR ` R ) ) ) ) |
10 |
9
|
simplbi |
|- ( S e. I -> S e. ( LIdeal ` R ) ) |
11 |
10
|
ad2antlr |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> S e. ( LIdeal ` R ) ) |
12 |
6
|
lidlsubg |
|- ( ( R e. Ring /\ S e. ( LIdeal ` R ) ) -> S e. ( SubGrp ` R ) ) |
13 |
5 11 12
|
syl2anc |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> S e. ( SubGrp ` R ) ) |
14 |
1 2
|
eqger |
|- ( S e. ( SubGrp ` R ) -> E Er X ) |
15 |
13 14
|
syl |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> E Er X ) |
16 |
|
simprl |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> A E C ) |
17 |
15 16
|
ersym |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> C E A ) |
18 |
|
ringabl |
|- ( R e. Ring -> R e. Abel ) |
19 |
18
|
ad2antrr |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> R e. Abel ) |
20 |
1 3
|
2idlss |
|- ( S e. I -> S C_ X ) |
21 |
20
|
ad2antlr |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> S C_ X ) |
22 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
23 |
1 22 2
|
eqgabl |
|- ( ( R e. Abel /\ S C_ X ) -> ( C E A <-> ( C e. X /\ A e. X /\ ( A ( -g ` R ) C ) e. S ) ) ) |
24 |
19 21 23
|
syl2anc |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( C E A <-> ( C e. X /\ A e. X /\ ( A ( -g ` R ) C ) e. S ) ) ) |
25 |
17 24
|
mpbid |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( C e. X /\ A e. X /\ ( A ( -g ` R ) C ) e. S ) ) |
26 |
25
|
simp2d |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> A e. X ) |
27 |
|
simprr |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> B E D ) |
28 |
1 22 2
|
eqgabl |
|- ( ( R e. Abel /\ S C_ X ) -> ( B E D <-> ( B e. X /\ D e. X /\ ( D ( -g ` R ) B ) e. S ) ) ) |
29 |
19 21 28
|
syl2anc |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( B E D <-> ( B e. X /\ D e. X /\ ( D ( -g ` R ) B ) e. S ) ) ) |
30 |
27 29
|
mpbid |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( B e. X /\ D e. X /\ ( D ( -g ` R ) B ) e. S ) ) |
31 |
30
|
simp1d |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> B e. X ) |
32 |
1 4 5 26 31
|
ringcld |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( A .x. B ) e. X ) |
33 |
25
|
simp1d |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> C e. X ) |
34 |
30
|
simp2d |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> D e. X ) |
35 |
1 4 5 33 34
|
ringcld |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( C .x. D ) e. X ) |
36 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
37 |
36
|
ad2antrr |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> R e. Grp ) |
38 |
1 4 5 33 31
|
ringcld |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( C .x. B ) e. X ) |
39 |
1 22
|
grpnnncan2 |
|- ( ( R e. Grp /\ ( ( C .x. D ) e. X /\ ( A .x. B ) e. X /\ ( C .x. B ) e. X ) ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) = ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) ) |
40 |
37 35 32 38 39
|
syl13anc |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) = ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) ) |
41 |
1 4 22 5 33 34 31
|
ringsubdi |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( C .x. ( D ( -g ` R ) B ) ) = ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ) |
42 |
30
|
simp3d |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( D ( -g ` R ) B ) e. S ) |
43 |
6 1 4
|
lidlmcl |
|- ( ( ( R e. Ring /\ S e. ( LIdeal ` R ) ) /\ ( C e. X /\ ( D ( -g ` R ) B ) e. S ) ) -> ( C .x. ( D ( -g ` R ) B ) ) e. S ) |
44 |
5 11 33 42 43
|
syl22anc |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( C .x. ( D ( -g ` R ) B ) ) e. S ) |
45 |
41 44
|
eqeltrrd |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) e. S ) |
46 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
47 |
1 4 7 46
|
opprmul |
|- ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) = ( ( A ( -g ` R ) C ) .x. B ) |
48 |
1 4 22 5 26 33 31
|
ringsubdir |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( ( A ( -g ` R ) C ) .x. B ) = ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) |
49 |
47 48
|
eqtrid |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) = ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) |
50 |
7
|
opprring |
|- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
51 |
50
|
ad2antrr |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( oppR ` R ) e. Ring ) |
52 |
9
|
simprbi |
|- ( S e. I -> S e. ( LIdeal ` ( oppR ` R ) ) ) |
53 |
52
|
ad2antlr |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> S e. ( LIdeal ` ( oppR ` R ) ) ) |
54 |
25
|
simp3d |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( A ( -g ` R ) C ) e. S ) |
55 |
7 1
|
opprbas |
|- X = ( Base ` ( oppR ` R ) ) |
56 |
8 55 46
|
lidlmcl |
|- ( ( ( ( oppR ` R ) e. Ring /\ S e. ( LIdeal ` ( oppR ` R ) ) ) /\ ( B e. X /\ ( A ( -g ` R ) C ) e. S ) ) -> ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) e. S ) |
57 |
51 53 31 54 56
|
syl22anc |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) e. S ) |
58 |
49 57
|
eqeltrrd |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) e. S ) |
59 |
6 22
|
lidlsubcl |
|- ( ( ( R e. Ring /\ S e. ( LIdeal ` R ) ) /\ ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) e. S /\ ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) e. S ) ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) e. S ) |
60 |
5 11 45 58 59
|
syl22anc |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) e. S ) |
61 |
40 60
|
eqeltrrd |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) e. S ) |
62 |
1 22 2
|
eqgabl |
|- ( ( R e. Abel /\ S C_ X ) -> ( ( A .x. B ) E ( C .x. D ) <-> ( ( A .x. B ) e. X /\ ( C .x. D ) e. X /\ ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) e. S ) ) ) |
63 |
19 21 62
|
syl2anc |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( ( A .x. B ) E ( C .x. D ) <-> ( ( A .x. B ) e. X /\ ( C .x. D ) e. X /\ ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) e. S ) ) ) |
64 |
32 35 61 63
|
mpbir3and |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( A E C /\ B E D ) ) -> ( A .x. B ) E ( C .x. D ) ) |
65 |
64
|
ex |
|- ( ( R e. Ring /\ S e. I ) -> ( ( A E C /\ B E D ) -> ( A .x. B ) E ( C .x. D ) ) ) |