| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2idlcpblrng.x |
|- X = ( Base ` R ) |
| 2 |
|
2idlcpblrng.r |
|- E = ( R ~QG S ) |
| 3 |
|
2idlcpblrng.i |
|- I = ( 2Ideal ` R ) |
| 4 |
|
2idlcpblrng.t |
|- .x. = ( .r ` R ) |
| 5 |
|
simpl1 |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> R e. Rng ) |
| 6 |
|
simpl3 |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> S e. ( SubGrp ` R ) ) |
| 7 |
1 2
|
eqger |
|- ( S e. ( SubGrp ` R ) -> E Er X ) |
| 8 |
6 7
|
syl |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> E Er X ) |
| 9 |
|
simprl |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> A E C ) |
| 10 |
8 9
|
ersym |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> C E A ) |
| 11 |
|
rngabl |
|- ( R e. Rng -> R e. Abel ) |
| 12 |
11
|
3ad2ant1 |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> R e. Abel ) |
| 13 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 14 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 15 |
|
eqid |
|- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
| 16 |
13 14 15 3
|
2idlelb |
|- ( S e. I <-> ( S e. ( LIdeal ` R ) /\ S e. ( LIdeal ` ( oppR ` R ) ) ) ) |
| 17 |
16
|
simplbi |
|- ( S e. I -> S e. ( LIdeal ` R ) ) |
| 18 |
17
|
3ad2ant2 |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> S e. ( LIdeal ` R ) ) |
| 19 |
18
|
adantr |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> S e. ( LIdeal ` R ) ) |
| 20 |
1 13
|
lidlss |
|- ( S e. ( LIdeal ` R ) -> S C_ X ) |
| 21 |
19 20
|
syl |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> S C_ X ) |
| 22 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
| 23 |
1 22 2
|
eqgabl |
|- ( ( R e. Abel /\ S C_ X ) -> ( C E A <-> ( C e. X /\ A e. X /\ ( A ( -g ` R ) C ) e. S ) ) ) |
| 24 |
12 21 23
|
syl2an2r |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C E A <-> ( C e. X /\ A e. X /\ ( A ( -g ` R ) C ) e. S ) ) ) |
| 25 |
10 24
|
mpbid |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C e. X /\ A e. X /\ ( A ( -g ` R ) C ) e. S ) ) |
| 26 |
25
|
simp2d |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> A e. X ) |
| 27 |
|
simprr |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> B E D ) |
| 28 |
1 22 2
|
eqgabl |
|- ( ( R e. Abel /\ S C_ X ) -> ( B E D <-> ( B e. X /\ D e. X /\ ( D ( -g ` R ) B ) e. S ) ) ) |
| 29 |
12 21 28
|
syl2an2r |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( B E D <-> ( B e. X /\ D e. X /\ ( D ( -g ` R ) B ) e. S ) ) ) |
| 30 |
27 29
|
mpbid |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( B e. X /\ D e. X /\ ( D ( -g ` R ) B ) e. S ) ) |
| 31 |
30
|
simp1d |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> B e. X ) |
| 32 |
1 4
|
rngcl |
|- ( ( R e. Rng /\ A e. X /\ B e. X ) -> ( A .x. B ) e. X ) |
| 33 |
5 26 31 32
|
syl3anc |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( A .x. B ) e. X ) |
| 34 |
25
|
simp1d |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> C e. X ) |
| 35 |
30
|
simp2d |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> D e. X ) |
| 36 |
1 4
|
rngcl |
|- ( ( R e. Rng /\ C e. X /\ D e. X ) -> ( C .x. D ) e. X ) |
| 37 |
5 34 35 36
|
syl3anc |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C .x. D ) e. X ) |
| 38 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
| 39 |
38
|
3ad2ant1 |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> R e. Grp ) |
| 40 |
39
|
adantr |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> R e. Grp ) |
| 41 |
1 4
|
rngcl |
|- ( ( R e. Rng /\ C e. X /\ B e. X ) -> ( C .x. B ) e. X ) |
| 42 |
5 34 31 41
|
syl3anc |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C .x. B ) e. X ) |
| 43 |
1 22
|
grpnnncan2 |
|- ( ( R e. Grp /\ ( ( C .x. D ) e. X /\ ( A .x. B ) e. X /\ ( C .x. B ) e. X ) ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) = ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) ) |
| 44 |
40 37 33 42 43
|
syl13anc |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) = ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) ) |
| 45 |
1 4 22 5 34 35 31
|
rngsubdi |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C .x. ( D ( -g ` R ) B ) ) = ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ) |
| 46 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 47 |
46
|
subg0cl |
|- ( S e. ( SubGrp ` R ) -> ( 0g ` R ) e. S ) |
| 48 |
47
|
3ad2ant3 |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( 0g ` R ) e. S ) |
| 49 |
48
|
adantr |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( 0g ` R ) e. S ) |
| 50 |
30
|
simp3d |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( D ( -g ` R ) B ) e. S ) |
| 51 |
46 1 4 13
|
rnglidlmcl |
|- ( ( ( R e. Rng /\ S e. ( LIdeal ` R ) /\ ( 0g ` R ) e. S ) /\ ( C e. X /\ ( D ( -g ` R ) B ) e. S ) ) -> ( C .x. ( D ( -g ` R ) B ) ) e. S ) |
| 52 |
5 19 49 34 50 51
|
syl32anc |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C .x. ( D ( -g ` R ) B ) ) e. S ) |
| 53 |
45 52
|
eqeltrrd |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) e. S ) |
| 54 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
| 55 |
1 4 14 54
|
opprmul |
|- ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) = ( ( A ( -g ` R ) C ) .x. B ) |
| 56 |
1 4 22 5 26 34 31
|
rngsubdir |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( A ( -g ` R ) C ) .x. B ) = ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) |
| 57 |
55 56
|
eqtrid |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) = ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) |
| 58 |
14
|
opprrng |
|- ( R e. Rng -> ( oppR ` R ) e. Rng ) |
| 59 |
58
|
3ad2ant1 |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( oppR ` R ) e. Rng ) |
| 60 |
59
|
adantr |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( oppR ` R ) e. Rng ) |
| 61 |
16
|
simprbi |
|- ( S e. I -> S e. ( LIdeal ` ( oppR ` R ) ) ) |
| 62 |
61
|
3ad2ant2 |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> S e. ( LIdeal ` ( oppR ` R ) ) ) |
| 63 |
62
|
adantr |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> S e. ( LIdeal ` ( oppR ` R ) ) ) |
| 64 |
25
|
simp3d |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( A ( -g ` R ) C ) e. S ) |
| 65 |
14 46
|
oppr0 |
|- ( 0g ` R ) = ( 0g ` ( oppR ` R ) ) |
| 66 |
14 1
|
opprbas |
|- X = ( Base ` ( oppR ` R ) ) |
| 67 |
65 66 54 15
|
rnglidlmcl |
|- ( ( ( ( oppR ` R ) e. Rng /\ S e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. S ) /\ ( B e. X /\ ( A ( -g ` R ) C ) e. S ) ) -> ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) e. S ) |
| 68 |
60 63 49 31 64 67
|
syl32anc |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) e. S ) |
| 69 |
57 68
|
eqeltrrd |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) e. S ) |
| 70 |
22
|
subgsubcl |
|- ( ( S e. ( SubGrp ` R ) /\ ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) e. S /\ ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) e. S ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) e. S ) |
| 71 |
6 53 69 70
|
syl3anc |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) e. S ) |
| 72 |
44 71
|
eqeltrrd |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) e. S ) |
| 73 |
1 22 2
|
eqgabl |
|- ( ( R e. Abel /\ S C_ X ) -> ( ( A .x. B ) E ( C .x. D ) <-> ( ( A .x. B ) e. X /\ ( C .x. D ) e. X /\ ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) e. S ) ) ) |
| 74 |
12 21 73
|
syl2an2r |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( A .x. B ) E ( C .x. D ) <-> ( ( A .x. B ) e. X /\ ( C .x. D ) e. X /\ ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) e. S ) ) ) |
| 75 |
33 37 72 74
|
mpbir3and |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( A .x. B ) E ( C .x. D ) ) |
| 76 |
75
|
ex |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( ( A E C /\ B E D ) -> ( A .x. B ) E ( C .x. D ) ) ) |