Metamath Proof Explorer


Theorem 2idlelb

Description: Membership in a two-sided ideal. Formerly part of proof for 2idlcpbl . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 20-Feb-2025)

Ref Expression
Hypotheses 2idlel.i
|- I = ( LIdeal ` R )
2idlel.o
|- O = ( oppR ` R )
2idlel.j
|- J = ( LIdeal ` O )
2idlel.t
|- T = ( 2Ideal ` R )
Assertion 2idlelb
|- ( U e. T <-> ( U e. I /\ U e. J ) )

Proof

Step Hyp Ref Expression
1 2idlel.i
 |-  I = ( LIdeal ` R )
2 2idlel.o
 |-  O = ( oppR ` R )
3 2idlel.j
 |-  J = ( LIdeal ` O )
4 2idlel.t
 |-  T = ( 2Ideal ` R )
5 1 2 3 4 2idlval
 |-  T = ( I i^i J )
6 5 elin2
 |-  ( U e. T <-> ( U e. I /\ U e. J ) )