Step |
Hyp |
Ref |
Expression |
1 |
|
2idlbas.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
2 |
|
2idlbas.j |
|- J = ( R |`s I ) |
3 |
|
2idlbas.b |
|- B = ( Base ` J ) |
4 |
1 2 3
|
2idlbas |
|- ( ph -> B = I ) |
5 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
6 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
7 |
|
eqid |
|- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
8 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
9 |
5 6 7 8
|
2idlelb |
|- ( I e. ( 2Ideal ` R ) <-> ( I e. ( LIdeal ` R ) /\ I e. ( LIdeal ` ( oppR ` R ) ) ) ) |
10 |
9
|
simplbi |
|- ( I e. ( 2Ideal ` R ) -> I e. ( LIdeal ` R ) ) |
11 |
1 10
|
syl |
|- ( ph -> I e. ( LIdeal ` R ) ) |
12 |
4 11
|
eqeltrd |
|- ( ph -> B e. ( LIdeal ` R ) ) |
13 |
9
|
simprbi |
|- ( I e. ( 2Ideal ` R ) -> I e. ( LIdeal ` ( oppR ` R ) ) ) |
14 |
1 13
|
syl |
|- ( ph -> I e. ( LIdeal ` ( oppR ` R ) ) ) |
15 |
4 14
|
eqeltrd |
|- ( ph -> B e. ( LIdeal ` ( oppR ` R ) ) ) |
16 |
12 15
|
jca |
|- ( ph -> ( B e. ( LIdeal ` R ) /\ B e. ( LIdeal ` ( oppR ` R ) ) ) ) |