Database
BASIC ALGEBRAIC STRUCTURES
Subring algebras and ideals
Two-sided ideals and quotient rings
2idlss
Metamath Proof Explorer
Description: A two-sided ideal is a subset of the base set. Formerly part of proof
for 2idlcpbl . (Contributed by Mario Carneiro , 14-Jun-2015)
(Revised by AV , 20-Feb-2025) (Proof shortened by AV , 13-Mar-2025)
Ref
Expression
Hypotheses
2idlss.b
|- B = ( Base ` W )
2idlss.i
|- I = ( 2Ideal ` W )
Assertion
2idlss
|- ( U e. I -> U C_ B )
Proof
Step
Hyp
Ref
Expression
1
2idlss.b
|- B = ( Base ` W )
2
2idlss.i
|- I = ( 2Ideal ` W )
3
2
eleq2i
|- ( U e. I <-> U e. ( 2Ideal ` W ) )
4
3
biimpi
|- ( U e. I -> U e. ( 2Ideal ` W ) )
5
4
2idllidld
|- ( U e. I -> U e. ( LIdeal ` W ) )
6
eqid
|- ( LIdeal ` W ) = ( LIdeal ` W )
7
1 6
lidlss
|- ( U e. ( LIdeal ` W ) -> U C_ B )
8
5 7
syl
|- ( U e. I -> U C_ B )