Step |
Hyp |
Ref |
Expression |
1 |
|
2idlval.i |
|- I = ( LIdeal ` R ) |
2 |
|
2idlval.o |
|- O = ( oppR ` R ) |
3 |
|
2idlval.j |
|- J = ( LIdeal ` O ) |
4 |
|
2idlval.t |
|- T = ( 2Ideal ` R ) |
5 |
|
fveq2 |
|- ( r = R -> ( LIdeal ` r ) = ( LIdeal ` R ) ) |
6 |
5 1
|
eqtr4di |
|- ( r = R -> ( LIdeal ` r ) = I ) |
7 |
|
fveq2 |
|- ( r = R -> ( oppR ` r ) = ( oppR ` R ) ) |
8 |
7 2
|
eqtr4di |
|- ( r = R -> ( oppR ` r ) = O ) |
9 |
8
|
fveq2d |
|- ( r = R -> ( LIdeal ` ( oppR ` r ) ) = ( LIdeal ` O ) ) |
10 |
9 3
|
eqtr4di |
|- ( r = R -> ( LIdeal ` ( oppR ` r ) ) = J ) |
11 |
6 10
|
ineq12d |
|- ( r = R -> ( ( LIdeal ` r ) i^i ( LIdeal ` ( oppR ` r ) ) ) = ( I i^i J ) ) |
12 |
|
df-2idl |
|- 2Ideal = ( r e. _V |-> ( ( LIdeal ` r ) i^i ( LIdeal ` ( oppR ` r ) ) ) ) |
13 |
1
|
fvexi |
|- I e. _V |
14 |
13
|
inex1 |
|- ( I i^i J ) e. _V |
15 |
11 12 14
|
fvmpt |
|- ( R e. _V -> ( 2Ideal ` R ) = ( I i^i J ) ) |
16 |
|
fvprc |
|- ( -. R e. _V -> ( 2Ideal ` R ) = (/) ) |
17 |
|
inss1 |
|- ( I i^i J ) C_ I |
18 |
|
fvprc |
|- ( -. R e. _V -> ( LIdeal ` R ) = (/) ) |
19 |
1 18
|
eqtrid |
|- ( -. R e. _V -> I = (/) ) |
20 |
|
sseq0 |
|- ( ( ( I i^i J ) C_ I /\ I = (/) ) -> ( I i^i J ) = (/) ) |
21 |
17 19 20
|
sylancr |
|- ( -. R e. _V -> ( I i^i J ) = (/) ) |
22 |
16 21
|
eqtr4d |
|- ( -. R e. _V -> ( 2Ideal ` R ) = ( I i^i J ) ) |
23 |
15 22
|
pm2.61i |
|- ( 2Ideal ` R ) = ( I i^i J ) |
24 |
4 23
|
eqtri |
|- T = ( I i^i J ) |