| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2idlval.i |
|- I = ( LIdeal ` R ) |
| 2 |
|
2idlval.o |
|- O = ( oppR ` R ) |
| 3 |
|
2idlval.j |
|- J = ( LIdeal ` O ) |
| 4 |
|
2idlval.t |
|- T = ( 2Ideal ` R ) |
| 5 |
|
fveq2 |
|- ( r = R -> ( LIdeal ` r ) = ( LIdeal ` R ) ) |
| 6 |
5 1
|
eqtr4di |
|- ( r = R -> ( LIdeal ` r ) = I ) |
| 7 |
|
fveq2 |
|- ( r = R -> ( oppR ` r ) = ( oppR ` R ) ) |
| 8 |
7 2
|
eqtr4di |
|- ( r = R -> ( oppR ` r ) = O ) |
| 9 |
8
|
fveq2d |
|- ( r = R -> ( LIdeal ` ( oppR ` r ) ) = ( LIdeal ` O ) ) |
| 10 |
9 3
|
eqtr4di |
|- ( r = R -> ( LIdeal ` ( oppR ` r ) ) = J ) |
| 11 |
6 10
|
ineq12d |
|- ( r = R -> ( ( LIdeal ` r ) i^i ( LIdeal ` ( oppR ` r ) ) ) = ( I i^i J ) ) |
| 12 |
|
df-2idl |
|- 2Ideal = ( r e. _V |-> ( ( LIdeal ` r ) i^i ( LIdeal ` ( oppR ` r ) ) ) ) |
| 13 |
1
|
fvexi |
|- I e. _V |
| 14 |
13
|
inex1 |
|- ( I i^i J ) e. _V |
| 15 |
11 12 14
|
fvmpt |
|- ( R e. _V -> ( 2Ideal ` R ) = ( I i^i J ) ) |
| 16 |
|
fvprc |
|- ( -. R e. _V -> ( 2Ideal ` R ) = (/) ) |
| 17 |
|
inss1 |
|- ( I i^i J ) C_ I |
| 18 |
|
fvprc |
|- ( -. R e. _V -> ( LIdeal ` R ) = (/) ) |
| 19 |
1 18
|
eqtrid |
|- ( -. R e. _V -> I = (/) ) |
| 20 |
|
sseq0 |
|- ( ( ( I i^i J ) C_ I /\ I = (/) ) -> ( I i^i J ) = (/) ) |
| 21 |
17 19 20
|
sylancr |
|- ( -. R e. _V -> ( I i^i J ) = (/) ) |
| 22 |
16 21
|
eqtr4d |
|- ( -. R e. _V -> ( 2Ideal ` R ) = ( I i^i J ) ) |
| 23 |
15 22
|
pm2.61i |
|- ( 2Ideal ` R ) = ( I i^i J ) |
| 24 |
4 23
|
eqtri |
|- T = ( I i^i J ) |