| Step | Hyp | Ref | Expression | 
						
							| 1 |  | initoeu1.c |  |-  ( ph -> C e. Cat ) | 
						
							| 2 |  | initoeu1.a |  |-  ( ph -> A e. ( InitO ` C ) ) | 
						
							| 3 |  | initoeu1.b |  |-  ( ph -> B e. ( InitO ` C ) ) | 
						
							| 4 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 5 |  | eqid |  |-  ( Hom ` C ) = ( Hom ` C ) | 
						
							| 6 |  | eqid |  |-  ( comp ` C ) = ( comp ` C ) | 
						
							| 7 | 1 | 3ad2ant1 |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> C e. Cat ) | 
						
							| 8 |  | initoo |  |-  ( C e. Cat -> ( A e. ( InitO ` C ) -> A e. ( Base ` C ) ) ) | 
						
							| 9 | 1 2 8 | sylc |  |-  ( ph -> A e. ( Base ` C ) ) | 
						
							| 10 | 9 | 3ad2ant1 |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> A e. ( Base ` C ) ) | 
						
							| 11 |  | initoo |  |-  ( C e. Cat -> ( B e. ( InitO ` C ) -> B e. ( Base ` C ) ) ) | 
						
							| 12 | 1 3 11 | sylc |  |-  ( ph -> B e. ( Base ` C ) ) | 
						
							| 13 | 12 | 3ad2ant1 |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> B e. ( Base ` C ) ) | 
						
							| 14 |  | simp3 |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> F e. ( A ( Hom ` C ) B ) ) | 
						
							| 15 |  | simp2 |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> G e. ( B ( Hom ` C ) A ) ) | 
						
							| 16 | 4 5 6 7 10 13 10 14 15 | catcocl |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( G ( <. A , B >. ( comp ` C ) A ) F ) e. ( A ( Hom ` C ) A ) ) | 
						
							| 17 | 4 5 1 | initoid |  |-  ( ( ph /\ A e. ( InitO ` C ) ) -> ( A ( Hom ` C ) A ) = { ( ( Id ` C ) ` A ) } ) | 
						
							| 18 | 2 17 | mpdan |  |-  ( ph -> ( A ( Hom ` C ) A ) = { ( ( Id ` C ) ` A ) } ) | 
						
							| 19 | 18 | 3ad2ant1 |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( A ( Hom ` C ) A ) = { ( ( Id ` C ) ` A ) } ) | 
						
							| 20 | 19 | eleq2d |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( ( G ( <. A , B >. ( comp ` C ) A ) F ) e. ( A ( Hom ` C ) A ) <-> ( G ( <. A , B >. ( comp ` C ) A ) F ) e. { ( ( Id ` C ) ` A ) } ) ) | 
						
							| 21 |  | elsni |  |-  ( ( G ( <. A , B >. ( comp ` C ) A ) F ) e. { ( ( Id ` C ) ` A ) } -> ( G ( <. A , B >. ( comp ` C ) A ) F ) = ( ( Id ` C ) ` A ) ) | 
						
							| 22 | 20 21 | biimtrdi |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( ( G ( <. A , B >. ( comp ` C ) A ) F ) e. ( A ( Hom ` C ) A ) -> ( G ( <. A , B >. ( comp ` C ) A ) F ) = ( ( Id ` C ) ` A ) ) ) | 
						
							| 23 | 16 22 | mpd |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( G ( <. A , B >. ( comp ` C ) A ) F ) = ( ( Id ` C ) ` A ) ) | 
						
							| 24 |  | eqid |  |-  ( Id ` C ) = ( Id ` C ) | 
						
							| 25 |  | eqid |  |-  ( Sect ` C ) = ( Sect ` C ) | 
						
							| 26 | 4 5 6 24 25 7 10 13 14 15 | issect2 |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( F ( A ( Sect ` C ) B ) G <-> ( G ( <. A , B >. ( comp ` C ) A ) F ) = ( ( Id ` C ) ` A ) ) ) | 
						
							| 27 | 23 26 | mpbird |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> F ( A ( Sect ` C ) B ) G ) | 
						
							| 28 | 4 5 6 7 13 10 13 15 14 | catcocl |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( F ( <. B , A >. ( comp ` C ) B ) G ) e. ( B ( Hom ` C ) B ) ) | 
						
							| 29 | 4 5 1 | initoid |  |-  ( ( ph /\ B e. ( InitO ` C ) ) -> ( B ( Hom ` C ) B ) = { ( ( Id ` C ) ` B ) } ) | 
						
							| 30 | 3 29 | mpdan |  |-  ( ph -> ( B ( Hom ` C ) B ) = { ( ( Id ` C ) ` B ) } ) | 
						
							| 31 | 30 | 3ad2ant1 |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( B ( Hom ` C ) B ) = { ( ( Id ` C ) ` B ) } ) | 
						
							| 32 | 31 | eleq2d |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( ( F ( <. B , A >. ( comp ` C ) B ) G ) e. ( B ( Hom ` C ) B ) <-> ( F ( <. B , A >. ( comp ` C ) B ) G ) e. { ( ( Id ` C ) ` B ) } ) ) | 
						
							| 33 |  | elsni |  |-  ( ( F ( <. B , A >. ( comp ` C ) B ) G ) e. { ( ( Id ` C ) ` B ) } -> ( F ( <. B , A >. ( comp ` C ) B ) G ) = ( ( Id ` C ) ` B ) ) | 
						
							| 34 | 32 33 | biimtrdi |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( ( F ( <. B , A >. ( comp ` C ) B ) G ) e. ( B ( Hom ` C ) B ) -> ( F ( <. B , A >. ( comp ` C ) B ) G ) = ( ( Id ` C ) ` B ) ) ) | 
						
							| 35 | 28 34 | mpd |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( F ( <. B , A >. ( comp ` C ) B ) G ) = ( ( Id ` C ) ` B ) ) | 
						
							| 36 | 4 5 6 24 25 7 13 10 15 14 | issect2 |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( G ( B ( Sect ` C ) A ) F <-> ( F ( <. B , A >. ( comp ` C ) B ) G ) = ( ( Id ` C ) ` B ) ) ) | 
						
							| 37 | 35 36 | mpbird |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> G ( B ( Sect ` C ) A ) F ) | 
						
							| 38 |  | eqid |  |-  ( Inv ` C ) = ( Inv ` C ) | 
						
							| 39 | 4 38 1 9 12 25 | isinv |  |-  ( ph -> ( F ( A ( Inv ` C ) B ) G <-> ( F ( A ( Sect ` C ) B ) G /\ G ( B ( Sect ` C ) A ) F ) ) ) | 
						
							| 40 | 39 | 3ad2ant1 |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( F ( A ( Inv ` C ) B ) G <-> ( F ( A ( Sect ` C ) B ) G /\ G ( B ( Sect ` C ) A ) F ) ) ) | 
						
							| 41 | 27 37 40 | mpbir2and |  |-  ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> F ( A ( Inv ` C ) B ) G ) |