| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( a = ( sqrt ` 2 ) -> ( a ^c b ) = ( ( sqrt ` 2 ) ^c b ) ) | 
						
							| 2 | 1 | eleq1d |  |-  ( a = ( sqrt ` 2 ) -> ( ( a ^c b ) e. QQ <-> ( ( sqrt ` 2 ) ^c b ) e. QQ ) ) | 
						
							| 3 |  | oveq2 |  |-  ( b = ( sqrt ` 2 ) -> ( ( sqrt ` 2 ) ^c b ) = ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ) | 
						
							| 4 | 3 | eleq1d |  |-  ( b = ( sqrt ` 2 ) -> ( ( ( sqrt ` 2 ) ^c b ) e. QQ <-> ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) ) | 
						
							| 5 | 2 4 | rspc2ev |  |-  ( ( ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) -> E. a e. ( RR \ QQ ) E. b e. ( RR \ QQ ) ( a ^c b ) e. QQ ) | 
						
							| 6 |  | 3ianor |  |-  ( -. ( ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) <-> ( -. ( sqrt ` 2 ) e. ( RR \ QQ ) \/ -. ( sqrt ` 2 ) e. ( RR \ QQ ) \/ -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) ) | 
						
							| 7 |  | sqrt2irr0 |  |-  ( sqrt ` 2 ) e. ( RR \ QQ ) | 
						
							| 8 | 7 | pm2.24i |  |-  ( -. ( sqrt ` 2 ) e. ( RR \ QQ ) -> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ ) ) | 
						
							| 9 |  | 2rp |  |-  2 e. RR+ | 
						
							| 10 |  | rpsqrtcl |  |-  ( 2 e. RR+ -> ( sqrt ` 2 ) e. RR+ ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( sqrt ` 2 ) e. RR+ | 
						
							| 12 |  | rpre |  |-  ( ( sqrt ` 2 ) e. RR+ -> ( sqrt ` 2 ) e. RR ) | 
						
							| 13 |  | rpge0 |  |-  ( ( sqrt ` 2 ) e. RR+ -> 0 <_ ( sqrt ` 2 ) ) | 
						
							| 14 | 12 13 12 | recxpcld |  |-  ( ( sqrt ` 2 ) e. RR+ -> ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. RR ) | 
						
							| 15 | 11 14 | ax-mp |  |-  ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. RR | 
						
							| 16 | 15 | a1i |  |-  ( -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ -> ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. RR ) | 
						
							| 17 |  | id |  |-  ( -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ -> -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) | 
						
							| 18 | 16 17 | eldifd |  |-  ( -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ -> ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. ( RR \ QQ ) ) | 
						
							| 19 | 7 | a1i |  |-  ( -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ -> ( sqrt ` 2 ) e. ( RR \ QQ ) ) | 
						
							| 20 |  | sqrt2re |  |-  ( sqrt ` 2 ) e. RR | 
						
							| 21 | 20 | recni |  |-  ( sqrt ` 2 ) e. CC | 
						
							| 22 |  | cxpmul |  |-  ( ( ( sqrt ` 2 ) e. RR+ /\ ( sqrt ` 2 ) e. RR /\ ( sqrt ` 2 ) e. CC ) -> ( ( sqrt ` 2 ) ^c ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) ) = ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) ) | 
						
							| 23 | 11 20 21 22 | mp3an |  |-  ( ( sqrt ` 2 ) ^c ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) ) = ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) | 
						
							| 24 |  | 2re |  |-  2 e. RR | 
						
							| 25 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 26 |  | remsqsqrt |  |-  ( ( 2 e. RR /\ 0 <_ 2 ) -> ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) = 2 ) | 
						
							| 27 | 24 25 26 | mp2an |  |-  ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) = 2 | 
						
							| 28 | 27 | oveq2i |  |-  ( ( sqrt ` 2 ) ^c ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) ) = ( ( sqrt ` 2 ) ^c 2 ) | 
						
							| 29 |  | 2cn |  |-  2 e. CC | 
						
							| 30 |  | cxpsqrtth |  |-  ( 2 e. CC -> ( ( sqrt ` 2 ) ^c 2 ) = 2 ) | 
						
							| 31 | 29 30 | ax-mp |  |-  ( ( sqrt ` 2 ) ^c 2 ) = 2 | 
						
							| 32 |  | 2z |  |-  2 e. ZZ | 
						
							| 33 |  | zq |  |-  ( 2 e. ZZ -> 2 e. QQ ) | 
						
							| 34 | 32 33 | ax-mp |  |-  2 e. QQ | 
						
							| 35 | 31 34 | eqeltri |  |-  ( ( sqrt ` 2 ) ^c 2 ) e. QQ | 
						
							| 36 | 28 35 | eqeltri |  |-  ( ( sqrt ` 2 ) ^c ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) ) e. QQ | 
						
							| 37 | 23 36 | eqeltrri |  |-  ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ | 
						
							| 38 | 37 | a1i |  |-  ( -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ -> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ ) | 
						
							| 39 | 18 19 38 | 3jca |  |-  ( -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ -> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ ) ) | 
						
							| 40 | 8 8 39 | 3jaoi |  |-  ( ( -. ( sqrt ` 2 ) e. ( RR \ QQ ) \/ -. ( sqrt ` 2 ) e. ( RR \ QQ ) \/ -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) -> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ ) ) | 
						
							| 41 | 6 40 | sylbi |  |-  ( -. ( ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) -> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ ) ) | 
						
							| 42 |  | oveq1 |  |-  ( a = ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) -> ( a ^c b ) = ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c b ) ) | 
						
							| 43 | 42 | eleq1d |  |-  ( a = ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) -> ( ( a ^c b ) e. QQ <-> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c b ) e. QQ ) ) | 
						
							| 44 |  | oveq2 |  |-  ( b = ( sqrt ` 2 ) -> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c b ) = ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) ) | 
						
							| 45 | 44 | eleq1d |  |-  ( b = ( sqrt ` 2 ) -> ( ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c b ) e. QQ <-> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ ) ) | 
						
							| 46 | 43 45 | rspc2ev |  |-  ( ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ ) -> E. a e. ( RR \ QQ ) E. b e. ( RR \ QQ ) ( a ^c b ) e. QQ ) | 
						
							| 47 | 41 46 | syl |  |-  ( -. ( ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) -> E. a e. ( RR \ QQ ) E. b e. ( RR \ QQ ) ( a ^c b ) e. QQ ) | 
						
							| 48 | 5 47 | pm2.61i |  |-  E. a e. ( RR \ QQ ) E. b e. ( RR \ QQ ) ( a ^c b ) e. QQ |