Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( a = ( sqrt ` 2 ) -> ( a ^c b ) = ( ( sqrt ` 2 ) ^c b ) ) |
2 |
1
|
eleq1d |
|- ( a = ( sqrt ` 2 ) -> ( ( a ^c b ) e. QQ <-> ( ( sqrt ` 2 ) ^c b ) e. QQ ) ) |
3 |
|
oveq2 |
|- ( b = ( sqrt ` 2 ) -> ( ( sqrt ` 2 ) ^c b ) = ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ) |
4 |
3
|
eleq1d |
|- ( b = ( sqrt ` 2 ) -> ( ( ( sqrt ` 2 ) ^c b ) e. QQ <-> ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) ) |
5 |
2 4
|
rspc2ev |
|- ( ( ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) -> E. a e. ( RR \ QQ ) E. b e. ( RR \ QQ ) ( a ^c b ) e. QQ ) |
6 |
|
3ianor |
|- ( -. ( ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) <-> ( -. ( sqrt ` 2 ) e. ( RR \ QQ ) \/ -. ( sqrt ` 2 ) e. ( RR \ QQ ) \/ -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) ) |
7 |
|
sqrt2irr0 |
|- ( sqrt ` 2 ) e. ( RR \ QQ ) |
8 |
7
|
pm2.24i |
|- ( -. ( sqrt ` 2 ) e. ( RR \ QQ ) -> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ ) ) |
9 |
|
2rp |
|- 2 e. RR+ |
10 |
|
rpsqrtcl |
|- ( 2 e. RR+ -> ( sqrt ` 2 ) e. RR+ ) |
11 |
9 10
|
ax-mp |
|- ( sqrt ` 2 ) e. RR+ |
12 |
|
rpre |
|- ( ( sqrt ` 2 ) e. RR+ -> ( sqrt ` 2 ) e. RR ) |
13 |
|
rpge0 |
|- ( ( sqrt ` 2 ) e. RR+ -> 0 <_ ( sqrt ` 2 ) ) |
14 |
12 13 12
|
recxpcld |
|- ( ( sqrt ` 2 ) e. RR+ -> ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. RR ) |
15 |
11 14
|
ax-mp |
|- ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. RR |
16 |
15
|
a1i |
|- ( -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ -> ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. RR ) |
17 |
|
id |
|- ( -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ -> -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) |
18 |
16 17
|
eldifd |
|- ( -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ -> ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. ( RR \ QQ ) ) |
19 |
7
|
a1i |
|- ( -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ -> ( sqrt ` 2 ) e. ( RR \ QQ ) ) |
20 |
|
sqrt2re |
|- ( sqrt ` 2 ) e. RR |
21 |
20
|
recni |
|- ( sqrt ` 2 ) e. CC |
22 |
|
cxpmul |
|- ( ( ( sqrt ` 2 ) e. RR+ /\ ( sqrt ` 2 ) e. RR /\ ( sqrt ` 2 ) e. CC ) -> ( ( sqrt ` 2 ) ^c ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) ) = ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) ) |
23 |
11 20 21 22
|
mp3an |
|- ( ( sqrt ` 2 ) ^c ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) ) = ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) |
24 |
|
2re |
|- 2 e. RR |
25 |
|
0le2 |
|- 0 <_ 2 |
26 |
|
remsqsqrt |
|- ( ( 2 e. RR /\ 0 <_ 2 ) -> ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) = 2 ) |
27 |
24 25 26
|
mp2an |
|- ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) = 2 |
28 |
27
|
oveq2i |
|- ( ( sqrt ` 2 ) ^c ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) ) = ( ( sqrt ` 2 ) ^c 2 ) |
29 |
|
2cn |
|- 2 e. CC |
30 |
|
cxpsqrtth |
|- ( 2 e. CC -> ( ( sqrt ` 2 ) ^c 2 ) = 2 ) |
31 |
29 30
|
ax-mp |
|- ( ( sqrt ` 2 ) ^c 2 ) = 2 |
32 |
|
2z |
|- 2 e. ZZ |
33 |
|
zq |
|- ( 2 e. ZZ -> 2 e. QQ ) |
34 |
32 33
|
ax-mp |
|- 2 e. QQ |
35 |
31 34
|
eqeltri |
|- ( ( sqrt ` 2 ) ^c 2 ) e. QQ |
36 |
28 35
|
eqeltri |
|- ( ( sqrt ` 2 ) ^c ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) ) e. QQ |
37 |
23 36
|
eqeltrri |
|- ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ |
38 |
37
|
a1i |
|- ( -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ -> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ ) |
39 |
18 19 38
|
3jca |
|- ( -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ -> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ ) ) |
40 |
8 8 39
|
3jaoi |
|- ( ( -. ( sqrt ` 2 ) e. ( RR \ QQ ) \/ -. ( sqrt ` 2 ) e. ( RR \ QQ ) \/ -. ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) -> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ ) ) |
41 |
6 40
|
sylbi |
|- ( -. ( ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) -> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ ) ) |
42 |
|
oveq1 |
|- ( a = ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) -> ( a ^c b ) = ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c b ) ) |
43 |
42
|
eleq1d |
|- ( a = ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) -> ( ( a ^c b ) e. QQ <-> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c b ) e. QQ ) ) |
44 |
|
oveq2 |
|- ( b = ( sqrt ` 2 ) -> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c b ) = ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) ) |
45 |
44
|
eleq1d |
|- ( b = ( sqrt ` 2 ) -> ( ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c b ) e. QQ <-> ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ ) ) |
46 |
43 45
|
rspc2ev |
|- ( ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) ^c ( sqrt ` 2 ) ) e. QQ ) -> E. a e. ( RR \ QQ ) E. b e. ( RR \ QQ ) ( a ^c b ) e. QQ ) |
47 |
41 46
|
syl |
|- ( -. ( ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( sqrt ` 2 ) e. ( RR \ QQ ) /\ ( ( sqrt ` 2 ) ^c ( sqrt ` 2 ) ) e. QQ ) -> E. a e. ( RR \ QQ ) E. b e. ( RR \ QQ ) ( a ^c b ) e. QQ ) |
48 |
5 47
|
pm2.61i |
|- E. a e. ( RR \ QQ ) E. b e. ( RR \ QQ ) ( a ^c b ) e. QQ |