| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2itscp.a | 
							 |-  ( ph -> A e. RR )  | 
						
						
							| 2 | 
							
								
							 | 
							2itscp.b | 
							 |-  ( ph -> B e. RR )  | 
						
						
							| 3 | 
							
								
							 | 
							2itscp.x | 
							 |-  ( ph -> X e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							2itscp.y | 
							 |-  ( ph -> Y e. RR )  | 
						
						
							| 5 | 
							
								
							 | 
							2itscp.d | 
							 |-  D = ( X - A )  | 
						
						
							| 6 | 
							
								
							 | 
							2itscp.e | 
							 |-  E = ( B - Y )  | 
						
						
							| 7 | 
							
								
							 | 
							2itscp.c | 
							 |-  C = ( ( D x. B ) + ( E x. A ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq1i | 
							 |-  ( C ^ 2 ) = ( ( ( D x. B ) + ( E x. A ) ) ^ 2 )  | 
						
						
							| 9 | 
							
								8
							 | 
							a1i | 
							 |-  ( ph -> ( C ^ 2 ) = ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) )  | 
						
						
							| 10 | 
							
								3
							 | 
							recnd | 
							 |-  ( ph -> X e. CC )  | 
						
						
							| 11 | 
							
								1
							 | 
							recnd | 
							 |-  ( ph -> A e. CC )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							subcld | 
							 |-  ( ph -> ( X - A ) e. CC )  | 
						
						
							| 13 | 
							
								5 12
							 | 
							eqeltrid | 
							 |-  ( ph -> D e. CC )  | 
						
						
							| 14 | 
							
								2
							 | 
							recnd | 
							 |-  ( ph -> B e. CC )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							mulcld | 
							 |-  ( ph -> ( D x. B ) e. CC )  | 
						
						
							| 16 | 
							
								4
							 | 
							recnd | 
							 |-  ( ph -> Y e. CC )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							subcld | 
							 |-  ( ph -> ( B - Y ) e. CC )  | 
						
						
							| 18 | 
							
								6 17
							 | 
							eqeltrid | 
							 |-  ( ph -> E e. CC )  | 
						
						
							| 19 | 
							
								18 11
							 | 
							mulcld | 
							 |-  ( ph -> ( E x. A ) e. CC )  | 
						
						
							| 20 | 
							
								
							 | 
							binom2 | 
							 |-  ( ( ( D x. B ) e. CC /\ ( E x. A ) e. CC ) -> ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) = ( ( ( ( D x. B ) ^ 2 ) + ( 2 x. ( ( D x. B ) x. ( E x. A ) ) ) ) + ( ( E x. A ) ^ 2 ) ) )  | 
						
						
							| 21 | 
							
								15 19 20
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) = ( ( ( ( D x. B ) ^ 2 ) + ( 2 x. ( ( D x. B ) x. ( E x. A ) ) ) ) + ( ( E x. A ) ^ 2 ) ) )  | 
						
						
							| 22 | 
							
								13 14
							 | 
							sqmuld | 
							 |-  ( ph -> ( ( D x. B ) ^ 2 ) = ( ( D ^ 2 ) x. ( B ^ 2 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							mul4r | 
							 |-  ( ( ( D e. CC /\ B e. CC ) /\ ( E e. CC /\ A e. CC ) ) -> ( ( D x. B ) x. ( E x. A ) ) = ( ( D x. A ) x. ( E x. B ) ) )  | 
						
						
							| 24 | 
							
								13 14 18 11 23
							 | 
							syl22anc | 
							 |-  ( ph -> ( ( D x. B ) x. ( E x. A ) ) = ( ( D x. A ) x. ( E x. B ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							oveq2d | 
							 |-  ( ph -> ( 2 x. ( ( D x. B ) x. ( E x. A ) ) ) = ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) )  | 
						
						
							| 26 | 
							
								22 25
							 | 
							oveq12d | 
							 |-  ( ph -> ( ( ( D x. B ) ^ 2 ) + ( 2 x. ( ( D x. B ) x. ( E x. A ) ) ) ) = ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) )  | 
						
						
							| 27 | 
							
								18 11
							 | 
							sqmuld | 
							 |-  ( ph -> ( ( E x. A ) ^ 2 ) = ( ( E ^ 2 ) x. ( A ^ 2 ) ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							oveq12d | 
							 |-  ( ph -> ( ( ( ( D x. B ) ^ 2 ) + ( 2 x. ( ( D x. B ) x. ( E x. A ) ) ) ) + ( ( E x. A ) ^ 2 ) ) = ( ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) )  | 
						
						
							| 29 | 
							
								9 21 28
							 | 
							3eqtrd | 
							 |-  ( ph -> ( C ^ 2 ) = ( ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) )  |