Step |
Hyp |
Ref |
Expression |
1 |
|
2itscp.a |
|- ( ph -> A e. RR ) |
2 |
|
2itscp.b |
|- ( ph -> B e. RR ) |
3 |
|
2itscp.x |
|- ( ph -> X e. RR ) |
4 |
|
2itscp.y |
|- ( ph -> Y e. RR ) |
5 |
|
2itscp.d |
|- D = ( X - A ) |
6 |
|
2itscp.e |
|- E = ( B - Y ) |
7 |
|
2itscp.c |
|- C = ( ( D x. B ) + ( E x. A ) ) |
8 |
|
2itscp.r |
|- ( ph -> R e. RR ) |
9 |
|
2itscplem3.q |
|- Q = ( ( E ^ 2 ) + ( D ^ 2 ) ) |
10 |
|
2itscplem3.s |
|- S = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
11 |
10
|
a1i |
|- ( ph -> S = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) ) |
12 |
9
|
a1i |
|- ( ph -> Q = ( ( E ^ 2 ) + ( D ^ 2 ) ) ) |
13 |
12
|
oveq2d |
|- ( ph -> ( ( R ^ 2 ) x. Q ) = ( ( R ^ 2 ) x. ( ( E ^ 2 ) + ( D ^ 2 ) ) ) ) |
14 |
8
|
recnd |
|- ( ph -> R e. CC ) |
15 |
14
|
sqcld |
|- ( ph -> ( R ^ 2 ) e. CC ) |
16 |
2
|
recnd |
|- ( ph -> B e. CC ) |
17 |
4
|
recnd |
|- ( ph -> Y e. CC ) |
18 |
16 17
|
subcld |
|- ( ph -> ( B - Y ) e. CC ) |
19 |
6 18
|
eqeltrid |
|- ( ph -> E e. CC ) |
20 |
19
|
sqcld |
|- ( ph -> ( E ^ 2 ) e. CC ) |
21 |
3
|
recnd |
|- ( ph -> X e. CC ) |
22 |
1
|
recnd |
|- ( ph -> A e. CC ) |
23 |
21 22
|
subcld |
|- ( ph -> ( X - A ) e. CC ) |
24 |
5 23
|
eqeltrid |
|- ( ph -> D e. CC ) |
25 |
24
|
sqcld |
|- ( ph -> ( D ^ 2 ) e. CC ) |
26 |
20 25
|
addcld |
|- ( ph -> ( ( E ^ 2 ) + ( D ^ 2 ) ) e. CC ) |
27 |
15 26
|
mulcomd |
|- ( ph -> ( ( R ^ 2 ) x. ( ( E ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( R ^ 2 ) ) ) |
28 |
20 25 15
|
adddird |
|- ( ph -> ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( R ^ 2 ) ) = ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) ) |
29 |
13 27 28
|
3eqtrd |
|- ( ph -> ( ( R ^ 2 ) x. Q ) = ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) ) |
30 |
1 2 3 4 5 6 7
|
2itscplem2 |
|- ( ph -> ( C ^ 2 ) = ( ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) |
31 |
29 30
|
oveq12d |
|- ( ph -> ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) = ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) ) |
32 |
20 15
|
mulcld |
|- ( ph -> ( ( E ^ 2 ) x. ( R ^ 2 ) ) e. CC ) |
33 |
25 15
|
mulcld |
|- ( ph -> ( ( D ^ 2 ) x. ( R ^ 2 ) ) e. CC ) |
34 |
32 33
|
addcld |
|- ( ph -> ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) e. CC ) |
35 |
16
|
sqcld |
|- ( ph -> ( B ^ 2 ) e. CC ) |
36 |
25 35
|
mulcld |
|- ( ph -> ( ( D ^ 2 ) x. ( B ^ 2 ) ) e. CC ) |
37 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
38 |
24 22
|
mulcld |
|- ( ph -> ( D x. A ) e. CC ) |
39 |
19 16
|
mulcld |
|- ( ph -> ( E x. B ) e. CC ) |
40 |
38 39
|
mulcld |
|- ( ph -> ( ( D x. A ) x. ( E x. B ) ) e. CC ) |
41 |
37 40
|
mulcld |
|- ( ph -> ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) e. CC ) |
42 |
34 36 41
|
subsub4d |
|- ( ph -> ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) = ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) ) |
43 |
42
|
eqcomd |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) = ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) |
44 |
43
|
oveq1d |
|- ( ph -> ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) |
45 |
34 36
|
subcld |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) e. CC ) |
46 |
22
|
sqcld |
|- ( ph -> ( A ^ 2 ) e. CC ) |
47 |
20 46
|
mulcld |
|- ( ph -> ( ( E ^ 2 ) x. ( A ^ 2 ) ) e. CC ) |
48 |
45 41 47
|
sub32d |
|- ( ph -> ( ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) |
49 |
44 48
|
eqtrd |
|- ( ph -> ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) |
50 |
36 41
|
addcld |
|- ( ph -> ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) e. CC ) |
51 |
34 50 47
|
subsub4d |
|- ( ph -> ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) ) |
52 |
32 33 36
|
addsubassd |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) = ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( ( D ^ 2 ) x. ( R ^ 2 ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) ) ) |
53 |
25 15 35
|
subdid |
|- ( ph -> ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) = ( ( ( D ^ 2 ) x. ( R ^ 2 ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) ) |
54 |
53
|
eqcomd |
|- ( ph -> ( ( ( D ^ 2 ) x. ( R ^ 2 ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) = ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) |
55 |
54
|
oveq2d |
|- ( ph -> ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( ( D ^ 2 ) x. ( R ^ 2 ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) ) = ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) ) |
56 |
52 55
|
eqtrd |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) = ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) ) |
57 |
56
|
oveq1d |
|- ( ph -> ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) |
58 |
15 35
|
subcld |
|- ( ph -> ( ( R ^ 2 ) - ( B ^ 2 ) ) e. CC ) |
59 |
25 58
|
mulcld |
|- ( ph -> ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) e. CC ) |
60 |
32 59 47
|
addsubd |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) ) |
61 |
20 15 46
|
subdid |
|- ( ph -> ( ( E ^ 2 ) x. ( ( R ^ 2 ) - ( A ^ 2 ) ) ) = ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) |
62 |
61
|
eqcomd |
|- ( ph -> ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( E ^ 2 ) x. ( ( R ^ 2 ) - ( A ^ 2 ) ) ) ) |
63 |
62
|
oveq1d |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) = ( ( ( E ^ 2 ) x. ( ( R ^ 2 ) - ( A ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) ) |
64 |
57 60 63
|
3eqtrd |
|- ( ph -> ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( ( E ^ 2 ) x. ( ( R ^ 2 ) - ( A ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) ) |
65 |
64
|
oveq1d |
|- ( ph -> ( ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) = ( ( ( ( E ^ 2 ) x. ( ( R ^ 2 ) - ( A ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) |
66 |
49 51 65
|
3eqtr3d |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) = ( ( ( ( E ^ 2 ) x. ( ( R ^ 2 ) - ( A ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) |
67 |
11 31 66
|
3eqtrd |
|- ( ph -> S = ( ( ( ( E ^ 2 ) x. ( ( R ^ 2 ) - ( A ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) |