Metamath Proof Explorer


Theorem 2iunin

Description: Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008)

Ref Expression
Assertion 2iunin
|- U_ x e. A U_ y e. B ( C i^i D ) = ( U_ x e. A C i^i U_ y e. B D )

Proof

Step Hyp Ref Expression
1 iunin2
 |-  U_ y e. B ( C i^i D ) = ( C i^i U_ y e. B D )
2 1 a1i
 |-  ( x e. A -> U_ y e. B ( C i^i D ) = ( C i^i U_ y e. B D ) )
3 2 iuneq2i
 |-  U_ x e. A U_ y e. B ( C i^i D ) = U_ x e. A ( C i^i U_ y e. B D )
4 iunin1
 |-  U_ x e. A ( C i^i U_ y e. B D ) = ( U_ x e. A C i^i U_ y e. B D )
5 3 4 eqtri
 |-  U_ x e. A U_ y e. B ( C i^i D ) = ( U_ x e. A C i^i U_ y e. B D )