Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
2 |
1
|
rehalfcld |
|- ( N e. ZZ -> ( N / 2 ) e. RR ) |
3 |
2
|
adantr |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( N / 2 ) e. RR ) |
4 |
|
id |
|- ( I e. ZZ -> I e. ZZ ) |
5 |
|
2z |
|- 2 e. ZZ |
6 |
5
|
a1i |
|- ( I e. ZZ -> 2 e. ZZ ) |
7 |
4 6
|
zmulcld |
|- ( I e. ZZ -> ( I x. 2 ) e. ZZ ) |
8 |
7
|
zred |
|- ( I e. ZZ -> ( I x. 2 ) e. RR ) |
9 |
8
|
adantl |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( I x. 2 ) e. RR ) |
10 |
|
2re |
|- 2 e. RR |
11 |
|
2pos |
|- 0 < 2 |
12 |
10 11
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
13 |
12
|
a1i |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( 2 e. RR /\ 0 < 2 ) ) |
14 |
|
ltdiv1 |
|- ( ( ( N / 2 ) e. RR /\ ( I x. 2 ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( N / 2 ) < ( I x. 2 ) <-> ( ( N / 2 ) / 2 ) < ( ( I x. 2 ) / 2 ) ) ) |
15 |
3 9 13 14
|
syl3anc |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( ( N / 2 ) < ( I x. 2 ) <-> ( ( N / 2 ) / 2 ) < ( ( I x. 2 ) / 2 ) ) ) |
16 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
17 |
16
|
adantr |
|- ( ( N e. ZZ /\ I e. ZZ ) -> N e. CC ) |
18 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
19 |
18
|
a1i |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( 2 e. CC /\ 2 =/= 0 ) ) |
20 |
|
divdiv1 |
|- ( ( N e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( N / 2 ) / 2 ) = ( N / ( 2 x. 2 ) ) ) |
21 |
17 19 19 20
|
syl3anc |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( ( N / 2 ) / 2 ) = ( N / ( 2 x. 2 ) ) ) |
22 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
23 |
22
|
oveq2i |
|- ( N / ( 2 x. 2 ) ) = ( N / 4 ) |
24 |
21 23
|
eqtrdi |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( ( N / 2 ) / 2 ) = ( N / 4 ) ) |
25 |
|
zcn |
|- ( I e. ZZ -> I e. CC ) |
26 |
25
|
adantl |
|- ( ( N e. ZZ /\ I e. ZZ ) -> I e. CC ) |
27 |
|
2cnd |
|- ( ( N e. ZZ /\ I e. ZZ ) -> 2 e. CC ) |
28 |
|
2ne0 |
|- 2 =/= 0 |
29 |
28
|
a1i |
|- ( ( N e. ZZ /\ I e. ZZ ) -> 2 =/= 0 ) |
30 |
26 27 29
|
divcan4d |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( ( I x. 2 ) / 2 ) = I ) |
31 |
24 30
|
breq12d |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( ( ( N / 2 ) / 2 ) < ( ( I x. 2 ) / 2 ) <-> ( N / 4 ) < I ) ) |
32 |
|
4re |
|- 4 e. RR |
33 |
32
|
a1i |
|- ( N e. ZZ -> 4 e. RR ) |
34 |
|
4ne0 |
|- 4 =/= 0 |
35 |
34
|
a1i |
|- ( N e. ZZ -> 4 =/= 0 ) |
36 |
1 33 35
|
redivcld |
|- ( N e. ZZ -> ( N / 4 ) e. RR ) |
37 |
|
fllt |
|- ( ( ( N / 4 ) e. RR /\ I e. ZZ ) -> ( ( N / 4 ) < I <-> ( |_ ` ( N / 4 ) ) < I ) ) |
38 |
36 37
|
sylan |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( ( N / 4 ) < I <-> ( |_ ` ( N / 4 ) ) < I ) ) |
39 |
15 31 38
|
3bitrrd |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( ( |_ ` ( N / 4 ) ) < I <-> ( N / 2 ) < ( I x. 2 ) ) ) |