| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 2 |
1
|
rehalfcld |
|- ( N e. ZZ -> ( N / 2 ) e. RR ) |
| 3 |
2
|
adantr |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( N / 2 ) e. RR ) |
| 4 |
|
id |
|- ( I e. ZZ -> I e. ZZ ) |
| 5 |
|
2z |
|- 2 e. ZZ |
| 6 |
5
|
a1i |
|- ( I e. ZZ -> 2 e. ZZ ) |
| 7 |
4 6
|
zmulcld |
|- ( I e. ZZ -> ( I x. 2 ) e. ZZ ) |
| 8 |
7
|
zred |
|- ( I e. ZZ -> ( I x. 2 ) e. RR ) |
| 9 |
8
|
adantl |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( I x. 2 ) e. RR ) |
| 10 |
|
2re |
|- 2 e. RR |
| 11 |
|
2pos |
|- 0 < 2 |
| 12 |
10 11
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 13 |
12
|
a1i |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( 2 e. RR /\ 0 < 2 ) ) |
| 14 |
|
ltdiv1 |
|- ( ( ( N / 2 ) e. RR /\ ( I x. 2 ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( N / 2 ) < ( I x. 2 ) <-> ( ( N / 2 ) / 2 ) < ( ( I x. 2 ) / 2 ) ) ) |
| 15 |
3 9 13 14
|
syl3anc |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( ( N / 2 ) < ( I x. 2 ) <-> ( ( N / 2 ) / 2 ) < ( ( I x. 2 ) / 2 ) ) ) |
| 16 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 17 |
16
|
adantr |
|- ( ( N e. ZZ /\ I e. ZZ ) -> N e. CC ) |
| 18 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 19 |
18
|
a1i |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 20 |
|
divdiv1 |
|- ( ( N e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( N / 2 ) / 2 ) = ( N / ( 2 x. 2 ) ) ) |
| 21 |
17 19 19 20
|
syl3anc |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( ( N / 2 ) / 2 ) = ( N / ( 2 x. 2 ) ) ) |
| 22 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 23 |
22
|
oveq2i |
|- ( N / ( 2 x. 2 ) ) = ( N / 4 ) |
| 24 |
21 23
|
eqtrdi |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( ( N / 2 ) / 2 ) = ( N / 4 ) ) |
| 25 |
|
zcn |
|- ( I e. ZZ -> I e. CC ) |
| 26 |
25
|
adantl |
|- ( ( N e. ZZ /\ I e. ZZ ) -> I e. CC ) |
| 27 |
|
2cnd |
|- ( ( N e. ZZ /\ I e. ZZ ) -> 2 e. CC ) |
| 28 |
|
2ne0 |
|- 2 =/= 0 |
| 29 |
28
|
a1i |
|- ( ( N e. ZZ /\ I e. ZZ ) -> 2 =/= 0 ) |
| 30 |
26 27 29
|
divcan4d |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( ( I x. 2 ) / 2 ) = I ) |
| 31 |
24 30
|
breq12d |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( ( ( N / 2 ) / 2 ) < ( ( I x. 2 ) / 2 ) <-> ( N / 4 ) < I ) ) |
| 32 |
|
4re |
|- 4 e. RR |
| 33 |
32
|
a1i |
|- ( N e. ZZ -> 4 e. RR ) |
| 34 |
|
4ne0 |
|- 4 =/= 0 |
| 35 |
34
|
a1i |
|- ( N e. ZZ -> 4 =/= 0 ) |
| 36 |
1 33 35
|
redivcld |
|- ( N e. ZZ -> ( N / 4 ) e. RR ) |
| 37 |
|
fllt |
|- ( ( ( N / 4 ) e. RR /\ I e. ZZ ) -> ( ( N / 4 ) < I <-> ( |_ ` ( N / 4 ) ) < I ) ) |
| 38 |
36 37
|
sylan |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( ( N / 4 ) < I <-> ( |_ ` ( N / 4 ) ) < I ) ) |
| 39 |
15 31 38
|
3bitrrd |
|- ( ( N e. ZZ /\ I e. ZZ ) -> ( ( |_ ` ( N / 4 ) ) < I <-> ( N / 2 ) < ( I x. 2 ) ) ) |